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“An agent is learning if it improves its performance after making observations about the
world.”, S. Russell and P. Norvig, Artificial Intelligence — A Modern Approach

Deduction .
Induction #* general axioms — specific propositions

specific observations — general rules
(guaranteed to be correct)

Example

Example : .
all squirrels are mortal and Scrat is a

the sun rose every morning in the past —

the sun will rise tomorrow squirrel — Scrat is mortal
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Forms of learning

Parameters
e component to be improved
e prior knowledge — model
e data and feedback
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Forms of learning

Components

e A direct mapping from conditions on the
current state to actions

Parameters e A means to infer relevant properties of the

. world from the percept sequence
e component to be improved

e Information about the way the world
e prior knowledge — model y

e data and feedback

evolves and about the results of possible
actions

e Utility information indicating the
desirability of world states
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Forms of learning

Data
(x1, 1), (X2, ¥2), - € X X Y

e Classification : Y is finite (e.g.
{sunny, cloudy, rainy} or {true, false})

e Regression : Y is infinite (e.g. N)
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Forms of learning

Feedback

e Supervised learning : the agent observes
Data

input-output pairs (x,y) and learn
(x1, 1), (X2, ¥2), - € X X Y

y =f(x)
e Classification : Y is finite (e.g. e Unsupervised learning : the agent learns
{sunny, cloudy, rainy} or {true, false}) pattern from inputs
e Regression : Y is infinite (e.g. N) e Reinforcement learning : the agent

learns from a serie of reinforcements :
rewards and punishments
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Supervised Learning

Linear Regression and Classification
Deep Learning

Model Selection and Optimisation

Summary
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Supervised Learning - framework

Data set
(Xl,y1)7(X27y2),-- -(XN,)/N) eXxY
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Supervised Learning - framework

Data set
(XlaY1)»(X27Y2),-- -(XNa.yN) S XxY

Function to learn
y = f(x) — hypothesis h ~ f

Stationarity assumption

o P(Ej) = P(Ej+1) = P(Ej+2) = ... : each example has the same prior probability
distribution

o P(Ej) = P(Ej|Ej—1, Ej_5,...) : each example is independent from previous examples

< independent and identically distributed
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Model and dataset

Model

e hypothesis space H =
model class
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Model and dataset

Train and Evaluate
Learn with part of the data and evaluate with the rest :

Model e training set : to train candidate models (# model classes

e hypothesis space H = and # hyperparameters)
model class e validation set : to evaluate candidate models and select the
e hypothesis h € H = best

ekl e test set : to evaluate the selected model

e hyperparameters : k-fold cross-validation

parameters of the

e split the training set into k subsets
model class (e.g : . g

degree for polynomial) e iterate the three steps for all i € [1,k] :

e take subset / out
e train with kK — 1 joint subsets

e validate with the subset /
6/42



Evaluation

Loss function
y = f(x) and y = h(x)
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Usual loss functions
e Absolute-value loss : Li(y,y) = |y — 7|
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0 ify=9
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Evaluation

Loss function
y = f(x) and y = h(x)

L(x,y,y) = Utility(using y given x) — Utility(using y given x) — simplification : L(y, y)

example : For a spam filter, L(spam, nospam) =1 and L(nospam, spam) = 10

Empirical loss

Usual loss functions
EmpLoss; g( Z L(y,h
e Absolute-value loss : Li(y,y) = |y — 7| (x.y)CE
e Squared-error loss : Ly(y,9) = (y — 9)° (with |E| = N)

0 ify=y
1 else

e 0/1loss : Lo/1(y,y) = {

Generalization loss
Genloss; (h) = > L(y,h(x))P(x,y)
(x:y)
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Evaluation

Loss function
y = f(x) and y = h(x)

L(x,y,y) = Utility(using y given x) —

example :

Utility(using y given x) — simplification : L(y, y)

For a spam filter, L(spam, nospam) =1 and L(nospam, spam) = 10

Usual loss functions

e Absolute-value loss : Li(y,y) =
e Squared-error loss : Ly(y,y) =

e 0/1loss : Lo/1(y,y) = {

0
1

Generalization loss

GenlLoss; (h) =

(Z) Ly, h(x))P(x

ly =9
(y—=9)
ify=y
else
.Y)

2

Empirical loss

EmpLoss; g( Z L(y,h
(x,y)€E

(with |E] = N)

Regularization
Ockham'’s razor dictates to prefer simplicity
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Evaluation

Loss function
y = f(x) and y = h(x)

L(x,y,y) = Utility(using y given x) — Utility(using y given x) — simplification : L(y, y)

example : For a spam filter, L(spam, nospam) =1 and L(nospam, spam) = 10

Empirical loss

Usual loss functions
EmpLoss; g( Z L(y,h
e Absolute-value loss : Li(y,y) = |y — ¥ (x,y)€E
e Squared-error loss : Ly(y,9) = (y — 9)° (with |E| = N)
. 0 ify=y Regularization
® 0/1loss : Loj(y,y) = {1 else Ockham'’s razor dictates to prefer simplicity

’ Cost(h) = EmpLoss(h) + AComplexity(h) ‘

Generalization loss —
GenLoss (h) = > L(y,h(x))P(x,y) h* = argminCost(h)
x her 7/42



Learning failure

Realizability /Intractability
e Realizable : f ¢ H
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Learning failure
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Learning failure

Bias-Variance tradeoff

Low Variance High Variance

Realizability /Intractability
e Realizable : f ¢ H

e Computationally tractable : there exists algorithm to
explore H with reasonable amount of time/resources.

Low Bias

Dataset
f may be nondeterministic or noisy : different values of

High Bias

f(x) for a same x

Underfitting /Overfitting

e Overfitting : when a function pays too much attention e complex low-bias hypotheses
to the particular data it is trained on — doesn't that fit the training data well

generalize well. ) )
e simple low-variance

e Underfitting : when a function fails to find a pattern hypotheses that generalize

in the data. better 8/42
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Model classes

e Decision trees

Linear regression

Linear/Logistic classification

Support Vector Machines

Neural Networks

9/42



Linear Regression and
Classification



Univariate linear regression

Sample set
{(X17)/1)7 (X2ay2)7 ey (XNayN)} C R xR
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Univariate linear regression

Sample set
{(X17)/1)7 (X2ay2)7 ey (XNayN)} C R xR

Hypothesis
hz(x) = wo + wix with w = (wp, wy)

Minimize loss
Normally distributed noise — L, (Gauss)

Loss(hz) = ﬁ:le(yj» hz(x;)) =

Minimize L(w) = Loss(hg)

(v — (wo + w1x7))?

N
P

J
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Univariate linear regression

Sample set
{(X17)/1)7 (X2ay2)7 ey (XNayN)} C R xR

Hypothesis
hz(x) = wo + wix with w = (wp, wy)

Minimize loss
Normally distributed noise — L, (Gauss)

Loss(hz) = ﬁ:le(yj» hz(x;)) =

Minimize L(w) = Loss(hg)

(v — (wo + w1x7))?

N
P

J

Analytic solution
Show that the minimum of L(w) is obtained for :
X)) =N X)) )= (%)
() =N x7) N

wip =

and wy =

10/42



Gradient descent

ws
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Gradient descent

Algorithm

oL(w)
aW,'

Wi < W — « with « the learning rate

ws
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Gradient descent

ws

Algorithm
Wi < w; — ozagf/f) with « the learning rate
Univariate gradient descent
N
Wo <= wo + CYZ(YJ — hi(x7))
j=1

N
wi 4w+ a0y (v — ha(x))x;
=1
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Multivariable

Sample set
{(;17}/1)7 (X_éa.yZ)a RO (X_NayN)} g Rd x R
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Multivariable

Sample set
{(1,01), (0B, y2), -+, (s yw)} CRI xR

Hypothesis

d
th/()zj) = V_V‘)ZJ' = E W X with :
i=0

o w=(wp,w,...,wy) € R
% d
® X = (X1, %72,---,%d) €R
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Multivariable

Gradient descent

Sample set Wy

{(5,01), (B, ¥2), - (@, yn)} CRY X R wi = wi —a ) (y; — ha(%))xi
j=1

Hypothesis

d
hg (X)) = wx; = > w;x;j with :
i=0

° M_;:(Wo,Wl,...7Wd)€Rd+1
B — d

O XJ'_(leanZa"'and)ER

® xjo=1
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Multivariable

Gradient descent

Sample set Wy

{(5,01), (B, ¥2), - (@, yn)} CRY X R wi = wi —a ) (y; — ha(%))xi
j=1

Hypothesis

Analytic solution
X : matrix of inputs (each row is an xj),

y : vector of outputs (each row is a y;)

d
hg (X)) = wx; = > w;x;j with :
i=0

° M_;:(Wo,Wl,...7Wd)€Rd+1
' ) L(w) = [ X.w — y|
o X = (X1,X2,...,%q4) ER
Vwl(w)=2XT.(X.w—-y)=0
° XjO:]-

w* = (XT.X)"1. X"y |: normal equation

12/42



Epoch poc poc

Batch gradient descent

N
w; <— w; —a > (y; — hg(Xj))x;i (also called deterministic gradient descent)
j=1
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Epoch poc poc

Batch gradient descent

N
w; <— w; —a > (y; — hg(Xj))x;i (also called deterministic gradient descent)
j=1

Stochastic gradient descent (SGD)

1. select and remove a minibatch of m out of N training examples (randomly)

m
2. compute a step w; < w; —a Y (y; — he(X5))x;i
j=1

3. iterate until no more training examples

Epoch
A step that covers all N training examples

Complete algorithm
Iterate E epochs until convergence.

13/42
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Regularization

Overfitting
In high-dimensional spaces, some irrelevant dimension might appear to be useful

Regularization
Cost(h) = EmpLoss(h) + XComplexity(h)

For linear functions

d
Complexity(hg) = Lq(w) = > |w;]?
i=0

Usually, we use g =1 : Ly regularization — produces sparse model (remove attributes)
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Linear classification

e
o ° °
o
o @
° o ° + F Sample set
@ OOO ° . + o+ {()a7y1)7()6ay2)7'"a(XR/ayN)}ngX{Oal}
o + ++ . +
+ +
+
+ + o, "
z1
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Linear classification

2
[e]
° o
o
o ®
o
o ° + Sample set
® Ooo ° . + o+ {(>?17Y1)7(><3,Y2)7---a(XNaYN)}ngX{Oal}
° + o+ . Hypothesis . .
o o . The decision boundary is a linear separator.
.
+ + 4 +
1
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Hard threshold linear classifier

Threshold(z)

8 6 -4 —2 2 4 6 8

0ifz<O0

Threshold(z) =
1 else
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Hard threshold linear classifier

Hypothesis
Thneshold(z) hw (%) = Threshold(w.%;) with w € R+

1 Perceptron learning rule
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Issue
May not converge if data is not clearly separable

|| 2 (without noise)
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Hypothesis
Thneshold(z) hw (%) = Threshold(w.%;) with w € R+

1 Perceptron learning rule
[ wi — wi + aly; — hw (%)%

Issue
May not converge if data is not clearly separable

|| 2 (without noise)
-8 -6 -4 -2 2 4 6 8

Dynamic learning rate

at) = = (decrease with time elapsing)

0ifz<0 with ¢ a fairly large constant
Threshold(z) =

1 else
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Hard threshold linear classifier

Threshold(z)

Hypothesis
hi(X;) = Threshold(w.x;) with w € RY*1

Perceptron learning rule

-8

-6 -4 -2

Threshold(z) = {

0ifz<O0

1 else

[ wi — wi + aly; — hw (%)%

Issue
May not converge if data is not clearly separable

(without noise)
Dynamic learning rate
a(t) = 5 (decrease with time elapsing)

with ¢ a fairly large constant

Techmcally, we requwe that :

Za(t) ooandz a(t)? < oo

t=1

16/42



Logistic linear classifier

Logistic(z)

A

-8 -6 -4 =2 2 4 6 8

1

LOgiStiC(Z) = m

i = location parameter (here p = 0)
s : scale parameter (here s = 1)
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Logistic linear classifier

Logistic(z)

| —

A

-8 -6 -4 =2 2 4 6 8

1

LOgiStiC(Z) = m

i = location parameter (here p = 0)
s : scale parameter (here s = 1)

Hypothesis
hw(X) = Logistic(w.x;) with w € R9+1
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Logistic linear classifier

Logistic(z)

Iy Hypothesis
/~ hw(X) = Logistic(w.x;) with w € R9+1
Why though ?
J Logistic function is differentiable in 0!
z

-8 -6 -4 =2 2 4 6 8
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s : scale parameter (here s = 1)
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Logistic(z)

Iy Hypothesis
/~ hw(X) = Logistic(w.x;) with w € R9+1
Why though ?
J Logistic function is differentiable in 0!
z .

8§ -6 -4 -2 2 4 6 & Gradient descent
I Find the logistic learning rule from the general formula of

gradient descent : w; < w; + a() ( ) (for a single
example (x,y)).

1
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Logistic linear classifier

Logistic(z)

A

-8 -6 -4 =2 2 4 6

1

LOgiStiC(Z) = m

i = location parameter (here p = 0)
s : scale parameter (here s = 1)

Hypothesis
hw(X) = Logistic(w.x;) with w € R9+1

Why though ?
Logistic function is differentiable in 0!

Gradient descent
Find the logistic learning rule from the general formula of
gradient descent : w; < w; + a() ( ) (for a single

example (x,y)).

Logistic learning rule
| wi = wi+ aly; — ha(5))ha(%)(L = ha(%))x;

17/42



The kernel trick

What if ..
the dataset is not linearly

separable?
T2
+ F R
++ -
+
+ +
00, u
+ 000(98
+ 0@0
00 +
+
+ +
+ +
+ o+t
z1
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+ vy
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.
v +
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A
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The kernel trick

What if .. itz N
the dataset is not linearly Map into another space (generally higher dimensional) where

it is linearly separable : X — ¢(X)

separable?
2 Change the space
Find a (possibly higher dimensional) space in which this
o © o dataset is linearly separable.
m
o
+ 00 3 Kernel function
[0} - - — —
Y, 09%s8 K4 %) = 6(4)- (%) |
00 +
+
+ +
Yoo
7
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The kernel trick

What if .. itz N
the dataset is not linearly Map into another space (generally higher dimensional) where

separable? it is linearly separable : X — ¢(X)

2 Change the space
Find a (possibly higher dimensional) space in which this

ot dataset is linearly separable.

+ o ¥ Kernel function

0o P — >
&8 (K3 %) = 903)-9(%)|
[0}

+ N Reformulation

N
We can show that w = > dxxi then
k=1

M=

5kK(ﬁ<7)§)

=
Il
—

N N
m he(9)= X e X A7) () =

18/42



The kernel trick

Linear regression in the new space

ha(#(5)) = z 5K (5 %)
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The kernel trick

Linear regression in the new space
N
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Kernel matrix
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The kernel trick

Linear regression in the new space
N
ha($(x)) = kZl kK (X, %)

Kernel matrix
K e RN x RN st Kjj = K(x;, X})

Algorithm
We compute 0 instead of w :

Oi <= 0 + ay;

19/42



The kernel trick

Linear regression in the new space Popular kernel functions
N

hz(6(x%)) = > 0K (Xk, %) o Linear: K(X,2) = x.Z
k=1

e Polynomial : K(X,2) = (1 + x.2)¢
Kernel matrix

K e RN x RN st K; = K(%, X) e Radial Basis Function (RBF) :
’ —lI7=z112
<. Z = 02
Algorithm K(X7 Z) y —IF=7|

We compute 5 instead of W : e Laplacian Kernel :

K(%,
8; < 6 + a; e Sigmoid Kernel : K(X, ) tanh(ax.z + b)

19/42
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Linear Regression and Classification - Summary

Linear regression is in pratice computed with gradient descent

A linear classifier with a hard threshold is called a perceptron and can be learnt with
gradient descent if data is linearly separable

A decreasing learning rate improve convergence

Logistic regression replace the hard threshold by the logistic function

The kernel trick transforms input data to a higher-dimensional space where a linear

separator may exists

To go further ...
e Other non-parametric models : nearest neighbors and locally weighted regression

e Support Vector Machines

20/42
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Why is deep learning successful ?

Linear regression

£

Decision list

0-0O

Iy

Deep learning network
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Why is deep learning successful ?

Linear regression

[
[
[

Shallow
Short computation

path

Decision list

0-0O

8

No interaction
No complex interaction

between inputs

Iy

Deep Iearnmg network

OO
B e

O—O——[v

Deep
Long computation path and complex

interactions between many inputs
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Deep Learning

Type of networks

o feedforward network : directed acyclic Activation functions
graph

e recurrent network : loops computing

1

e Logistic or Sigmoid : o(x) = .=

e ReLU (Rectified Linear Unit) :
RelLU(x) = max(0, x)

Unit (a.k.a. Artificial Neuron) e Softplus (smooth RelLU) :

. \ softplus(x) = log(1 + €¥)

) b | b =90 wise)

e g; : activation function of unit j
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Deep Learning

Type of networks

o feedforward network : directed acyclic Activation functions
graph

e recurrent network : loops computing

1
1+e—x

Logistic or Sigmoid : o(x) =

. di fil ReLU (Rectified Linear Unit) :
Intermediate or final output Rel U(x) = max(0, x)

Softplus (smooth RelLU) :
softplus(x) = log(1 + €*)

tanh : tanh(x) = 7L (= 20(2x) — 1)

Unit (a.k.a. Artificial Neuron)
a.i b; bj = g; (3 wija;)
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Deep Learning

Type of networks

o feedforward network : directed acyclic Activation functions
graph e Logistic or Sigmoid : o(x) = o=
e recurrent network : loops computing e ReLU (Rectified Linear Unit) :
intermediate or final output ReBU = ma(0l)
- )

e Softplus (smooth RelU) :
softplus(x) = log(1 + €*)

a}\ by [ =9 wiser) e tanh : tanh(x) = 5= (= 20(2x) — 1)

Universal approximation theorem
A network with just two layers (one non-linear

Unit (a.k.a. Artificial Neuron)

and one linear) can approximate any continuous
e gj : activation function of unit j function to an arbitrary degree of accuracy.

e W : weights of unit j 22/42
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Loss(hw) = La(y, hw(x)) = (y = ¥)?

Output layer
OLloss(hw) __
ows s o
—2(y — ¥)gs(wo,5 + wasas + wasaz)as = Asas

Forward computation Hidden layer
OLloss(hw) __
R aW1,3 - o
y = g5(wo,5 + w3533 + Wa 534) Aswssg3(wo3 + wi3x1 + w2 3xz)x1 = Azxy
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An example

Example

Forward computation

¥y =gs(Wo5 + w3 5as + wasas)
y = gs(wo,5 + w3 583(Wo,3 + wi3x1 + wa 3x2)

+ Wi 584(Wo,a + Wi ax1 + W2 4x0))

hw(x) = gD (WP g(Wwx))

Gradient descent
Loss(hw) = La(y, hw(x)) = (y = ¥)?

Output layer
OLloss(hw) __

6W3,5 o
—2(y — y)gi(wos + wasas + wasas)as = Asasz

Hidden layer
OLloss(hw) __
Owi 3

Asws g5 (Wo 3 + Wi 3x1 + wa3xo)x = Asxq

Vanishing gradient
When g/(in;) ~ 0 — learning stops
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Learning algorithms - Backpropagation

Backpropagation
Y A N

A
TR B
)y @\&%‘
N\ A
- pO

h; : message from node h to node j
(hj = h(fh, &n))

£
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- : ) > X 8% _)@_) e
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\ A
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Learning algorithms - Backpropagation

Contribution of h on L

Baikpro;agatlon N p % B %+ﬁ
sO SRR 50k Lo
A ()
A N / N Backpropagate
oL _ 0L Oh and oL oL oh
v o f,  Ohof, g, Ohogy
o, @ % Ofy, ~ 0hOf, ogh  OhOgh
o 9L : alread d i
. A ® 5, - already computed at previous step
—> —> —)@—) ° g—g : specific to the type of node h
VA 7N

h; : message from node h to node j
(hj = h(fh, &n))
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Learning algorithms - Backpropagation

Contribution of h on L

Back i
a; pro;agatlon .~ oL oL L oL
O 0% - o o
A ()
A N / N Backpropagate
oL _oLon] [l oL oh
%/‘é‘(\' @ 6,;& Oty Oh Ofy, 0gh Oh Ogp
%
b N 9L . alread d i
N A e 7; : already computed at previous step
—> —> —)@—) ° g—g : specific to the type of node h
VA 7N
. ; Until ..
i - message from node h to node j .
hy e .. we reach a node corresponding to a
(hj = h(f, &n)) parameter w : a% — update w
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Learning algorithms - Enhancements

General gradient descent
W+ W —-aVul(W)

Batches

e When W dimensionality and the training
set are very large — minibatch

e Gradient contributions of each batch are
independent — parallel computing (GPU
or TPU)

Decreasing learning rate
a(t) decreasing function — find the right

schedule

Gradient has high variance on small batches
and thus may point to a wrong direction ..

e increase minibatch size as training
proceeds

e momemtum : keep a running average of
the gradient

Batch normalization

For each example i of the minibatch, replace
each output z; of each node by

Z = 'y\/z% + B (i : mean, o : standard
deviation, within the minibatch) (¢ > 0) (v and

B : new parameters)
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input, hidden output
layer layers layer
i

Input encoding
e generally straighforward : {T, L} — {0,1}, R — R,
log scale for big magnitudes, ...
e categories — one-hot encoding

e images — array-like structure to represent
adjacency

Output encoding

Hidden layer e multiclass — one-hot encoding : probability to be in
e 1985-2010 : sigmoid or tanh the class k B N
. . — e
e now : RelLU and softplus more S eyt £ esfismer(f) = %)e""k’

popular (vanishing gradient) e regression — linear layer

26/42
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Cross-entropy
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H(P,Q) = —E;p(z (|0g Q(z)) =
fP )log Q(z
For classification

e P : the true distribution over training
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Cross-entropy

Multiclass Classification

S atic Binary classification
Interpret y as probabilities

e probability of output y =1: q,—1 =y
Cross-entropy e _q- _ o
Measure of dissimilarity between two ® probability of output y =0: qy=0 =17

distributions P and Q : H(p,q) = —> pilogqi =
H(P,Q) = —E.~p(z (Iog Q(z)) = —ylogy — (1 y)log(1 - )
f P(z)log Q(z

For classification

e P : the true distribution over training
examples

e @ : the predictive hypothesis
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Cross-entropy

Multiclass Classification Binary classification
Interpret y as probabilities

e probability of output y =1: q,—1 =y
Cross-entropy

Measure of dissimilarity between two * probability of output y =0+ =0 =1 -7
distributions P and Q : H(p,q) = —> pilogqi =

H(P,Q) = —E,p(z (Iog Q(2)) = —ylogy — (1 —y)log(1 - y)

fP )log Q(z Cross-entropy loss
For classification L(w) =% é\/: H(px, qx)

e P : the true distribution over training

N
examples Z yilog Yic + (1 — yi) log(1 — yk))
Pl

= \

e @ : the predictive hypothesis

27/42
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Convolutional Networks

e . Convolution
Image specificities

e kernel : pattern of weights that is

e adjacency — units should receive .
replicated

input from a small local region

e space invariance — units should
share their weights

1D example

NG
RS

E0—{E

1
w3

E-20—E

E s,
S

E50—[E]

=
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Convolutional Networks

e . Convolution
Image specificities

e kernel : pattern of weights that is

e adjacency — units should receive .
replicated

input from a small local region
. . . e convolution : apply a kernel k of size [ :
e space invariance — units should

I
share their weights — Zi = Zl ijj+i—(/+1)/2
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e space invariance — units should
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Convolutional Networks

e . Convolution
Image specificities

e kernel : pattern of weights that is

e adjacency — units should receive .
replicated

input from a small local region
. . . e convolution : apply a kernel k of size [ :
e space invariance — units should

I
share their weights — Zi = Zl ijj+i—(/+1)/2
J:

1D example 2D pattern

NG
RS

20—

&
w3

>

Pooling

1
77 ceey
(if s > 1 : downsampling)

e average pooling : k = (

—I=

)

4,

e max-pooling :

zZj = maX1§j§I(><j+i—(/+1)/2)
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Tensor

Tensor
Multidimensional arrays of any dimension :

e 1D : vector
e 2D : matrix

Example
Input — output
minibatch of 64 images RGB 256x256 96 kernels 5x5x3 with s =2  feature map
256x256x3x64 — 128x128x96x64

29/42
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Residual Networks

Idea
To avoid vanishing gradient in very deep networks — keep information of the previous layer

Residual
Instead of z(i) — h(z(i_l)) — g(i)(W(i)z(i_l)) — z(i) — g’gi)(z(i_l) + f(z(i_l)))

° g,(i) : activation function

e f typically a linear + non-linear function : f(z) = Vg(Wz)

Disable a layer
We can make layers that can be disabled by setting V =0 : if g, = ReLU (at least for layers

i—1and i), z0~Y) = ReLU(in(~1)) then
z() = ReLU(2(=1)) = ReLU(ReLU(in(~1))) = ReLU(inl~1)) = z(i=1)

30/42
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Time series
A sequence of inputs xi,...,x7 and

observed outputs yi, ..., ¥T.
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Time series

A sequence of inputs xi,...,x7 and e time series — we need a memory z

observed outputs y, ..., y7. e time invariance — share weights at each time step

Basic RNN

(i Ol O— 1]
X

A
Wz’ . B ot
\/
So—m20—m

Gap WOHTJOH
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Recurrent Networks - Basic

. ] Signal or Text processing
Time series

A sequence of inputs xi,...,x7 and e time series — we need a memory z

observed outputs yi, ..., yT. e time invariance — share weights at each time step

Basic RNN

il e O— 3]
X

A
o
: T /
Ha2O—E;0 i O O— 1
N

Forward

Zy = gz(Wz,zzt—l i Wx,th)

and ¥ = gy (wy - 2) [27 |5 O— el 2 O—r]
2,2 z,y
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Recurrent Networks - Basic

Time series

A sequence of inputs x, ..
observed outputs yi, ..., ¥T.

Basic RNN

Wy, 2

A
N
[OHH;OH

Forward
Zr = gz(Wz,zzt—l + Wx,th)

and y: = g,(wy ,2)

Signal or Text processing

., X7 and e time series — we need a memory z
e time invariance — share weights at each time step
Backpropagation
T
g = 3 20— 9 limy Jwe 22
ElaO—[e;O—0) 6z _ i(; 0z
o ow .- gz(’nz,t)(ztfl + Wz z w, . )

NS
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Recurrent Networks - Basic

Signal or Text processing

Time series

A sequence of inputs x, ..
observed outputs yi, ..., ¥T.

Basic RNN

A
N
[OHH;OH

Wy, 2

Forward
Zr = gz(Wz,zzt—l + Wx,th)

and y: = g,(wy ,2)

., xT and

e time series — we need a memory z

e time invariance — share weights at each time step

O

o

NS

Backpropagation
T

e = 3 20— gl ey
. = .
dz; 32:4)

S = gé(inzﬁ)(zf*l + Wz z W

owy,

Issue
Gradient at step T will include terms

T
proportional to w, , [] g.(inz ;)
t=1

[rleO—lrlgO—lr] vanishing (w, , < 1) or exploding

(wy,, > 1) gradient
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Long Short-Term Memory (LSTM)

e memory cell ¢ : copied at each time step
Gating units : i T
o fi=0(Wrxi+ W,z 1)
° iy = U( Wx,ixt + Wz,izt—l)

® 0; = O'( Wx,oxt + Wz,ozt—l)

e forget gate f : elements of the memory
to forget/remember

e input gate i : elements of the memory to
update with new info from the inputs o ¢ =10 fit+irOtanh(Wy cxe + W, o2t 1)

e output gate o : elements of the memory * z = tanh(c;) © o;
to transfer to the short-term memory

e short-term memory z : as for basic RNN
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parts of two networks) + mutation
(adding/removing a layer or changing a parameter
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Hill climbing with mutations
Reinforcement learning
Bayesian optimization

Gradient descent

Empirical result
For a fixed number of weights : the deeper the

better

Train and evaluate
Reduce time of estimation : train on test set +
evaluate on validation set

e Smaller training set

e Fewer batches + prediction of improvement
e Reduced version of the network

e Focus on subgraph

e Learn heuristic evaluation function
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Improve generalization

Weight decay

Regularization with penalty )\Z VV,2J , typically A = 10~*
iJ

— Encourage small weights
(to stay in the linear part for sigmoid activation)
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Improve generalization

Weight decay

Regularization with penalty )\Z VV,2J , typically A = 10~*
iJ

— Encourage small weights

(to stay in the linear part for sigmoid activation)

Dropout
At each step of training deactivate a random set of units

e Encourage the detection of more features

e Make it more robust to noise
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Vision
Deep convolutional networks (since 1990s)

ImageNet competition : classification 1200000 images in 1000 categories

In 2012, AlexNet : error rate < 15.3% (2" : 25%) (now, error rate < 2%)
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Vision
Deep convolutional networks (since 1990s)

ImageNet competition : classification 1200000 images in 1000 categories
In 2012, AlexNet : error rate < 15.3% (2" : 25%) (now, error rate < 2%)

Natural Langage processing
Translation problems :

e Two networks : from L1 to IR + from IR to L2

e One end-to-end network < performs better

Speech recognition : representation of words with high-dimensional vectors — word embeddings

Reinforcement learning
Optimise the sum of future rewards : learn a value function, Q-function, policy, ...— deep

reinforcement learning

DeepMind : DQN an Atari-playing agent (2013) and AlphaGo (2014) 35/42



AlexNet architecture

224
55 dense dense
& 13 13 13 dense
B s 3 3 3
R i
1, 5 27 3 13 3713 3V 13
V 384 384 256 1000
224 256 Max Max 4096 4096
% Max pooling pooling
Stride pooling
3 of 4

Architecture of Alexnet. From left to right (input to output) five convolutional layers with Max Pooling
after layers 1,2, and 5, followed by a three layer fully connected classifier (layers 6-8). The number of

neurons in the output layer is equal to the designed number of output classes.
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Deep Learning - Summa

Neural Networks = computation graph composed of parameterized linear-threshold units

A neural network can represent complex nonlinear functions

Backpropagation = gradient descent for neural networks

Deep learning is suited for visual object recognition, speech recognition, natural language
processing and reinforcement learning

Convolutional networks — data with grid topology (e.g. images)

e Recurrent networks — sequence data (e.g. language modeling and machine translation)

To go further ...
e Transfer learning : re-train a pretrained network for a specific task

e Generative Adversarial Networks : a generator network + a discriminator network
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Model Selection and
Optimisation




Ensemble learning

Learn several hypothesis hy, hy, ..., hx and use a combination h* = {hy, hs,... hx}

e reduce bias of each base model by combining
e reduce variance of learning by voting
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Ensemble learning

Learn several hypothesis hy, hy, ..., hx and use a combination h* = {hy, hs,... hx}
e reduce bias of each base model by combining

e reduce variance of learning by voting

Bagging P Boosting
. 1
h*(x) = % Z hi(x)
i=1

Example : random forests (number of occurences), iterate after
learning each h;

: voting in the same model class 1. Boost incorrectly classified training
example by increasing its weight

Stacking
Train a new hypothesis on validation set augmented with 2. Weighted voting : h*(x) f: 2ihi(x)
i=1

the predictions of hy, ho, ..., hk

e learn a weight for each hypothesis h; : trust Gradient boosting

e we can add metadata (e.g. time to compute) and Boosting with gradient descent to find the

stack several layers weight on training examples 38/42



Model Selection

e Random Forests : lot of categorical features and many irrelevant
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Model Selection

Random Forests : lot of categorical features and many irrelevant

e Non-parametric models : lot of data and no prior knowledge — resulting hypothesis are

expensive to compute

Logistic Regression performs similarly than SVM

e SVM : is better for not too large dataset with high dimension

e Deep Neural Network : for complex pattern recognition (e.g. image or speech processing)
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Data enhancement

e Not enough data — data augmentation (example : image cropping/rotating/. . .)

e Unbalanced classes in data (example : unbalanced representation of negative vs. positive
examples) — undersample or oversample

e Outliers : points far from the majority — some model classes are less susceptible :

decision trees
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Summary




e Supervised learning is learning on labelled datasets

e Regression is learning a function with infinite output values

e Classification is learning a function with finite output values

e Linear/Logistic regression is a simple yet powerful model class for supervised learning

e Deep Neural Networks are computation graphs composed of units made of a non-linear
and a linear function

e Deep learning is well suited for visual object recognition, speech recognition, natural
language processing and reinforcement learning
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Sources

e Artificial Intelligence : A Modern Approach, Stuart Russell and Peter Norvig
e Lecture of Didier Lime (2022-2023)
e Lecture of Kilian Weinberger : https://courses.cis.cornell.edu/cs4780/2017sp/
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