Artificial Intelligence

Supervised Learning

Rémi Parrot
remi.parrot@ec-nantes.fr
11 mars 2024

CENTRALE
NANTES

Learning

"An agent is learning if it improves its performance after making observations about the world.", S. Russell and P. Norvig, Artificial Intelligence - A Modern Approach

Learning

"An agent is learning if it improves its performance after making observations about the world.", S. Russell and P. Norvig, Artificial Intelligence - A Modern Approach

Induction
specific observations \rightarrow general rules

Deduction
general axioms \rightarrow specific propositions
(guaranteed to be correct)

Learning

"An agent is learning if it improves its performance after making observations about the world.", S. Russell and P. Norvig, Artificial Intelligence - A Modern Approach

```
Induction
specific observations \(\rightarrow\) general rules
```


Example

the sun rose every morning in the past \rightarrow the sun will rise tomorrow

Deduction

general axioms \rightarrow specific propositions
(guaranteed to be correct)

Example

all squirrels are mortal and Scrat is a squirrel \rightarrow Scrat is mortal

Forms of learning

Parameters

- component to be improved
- prior knowledge \rightarrow model
- data and feedback

Forms of learning

Components

- A direct mapping from conditions on the current state to actions

Parameters

- component to be improved
- prior knowledge \rightarrow model
- data and feedback
- A means to infer relevant properties of the world from the percept sequence
- Information about the way the world evolves and about the results of possible actions
- Utility information indicating the desirability of world states

Forms of learning

Data

$\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \cdots \in X \times Y$

- Classification : Y is finite (e.g.
\{sunny, cloudy, rainy\} or \{true, false\})
- Regression : Y is infinite (e.g. \mathbb{N})

Forms of learning

Feedback

- Supervised learning : the agent observes input-output pairs (x, y) and learn $y=f(x)$
- Unsupervised learning : the agent learns pattern from inputs
- Reinforcement learning : the agent learns from a serie of reinforcements : rewards and punishments

Content

Supervised Learning

Linear Regression and Classification

Deep Learning

Model Selection and Optimisation

Summary

Supervised Learning

Supervised Learning - framework

Data set
$\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots\left(x_{N}, y_{N}\right) \in X \times Y$

Supervised Learning - framework

Data set
$\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots\left(x_{N}, y_{N}\right) \in X \times Y$
Function to learn
$y=f(x) \rightarrow$ hypothesis $h \sim f$

Supervised Learning - framework

Data set
$\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots\left(x_{N}, y_{N}\right) \in X \times Y$
Function to learn
$y=f(x) \rightarrow$ hypothesis $h \sim f$
Stationarity assumption

- $P\left(E_{j}\right)=P\left(E_{j+1}\right)=P\left(E_{j+2}\right)=\ldots$: each example has the same prior probability distribution
- $P\left(E_{j}\right)=P\left(E_{j} \mid E_{j-1}, E_{j-2}, \ldots\right)$: each example is independent from previous examples
\hookrightarrow independent and identically distributed

Model and dataset

Model

- hypothesis space $\mathcal{H}=$ model class

Model and dataset

Model

- hypothesis space $\mathcal{H}=$ model class
- hypothesis $h \in \mathcal{H}=$ model

Model and dataset

Model

- hypothesis space $\mathcal{H}=$ model class
- hypothesis $h \in \mathcal{H}=$ model
- hyperparameters :
parameters of the
model class (e.g :
degree for polynomial)

Model and dataset

Train and Evaluate

Learn with part of the data and evaluate with the rest :

Model

- hypothesis space $\mathcal{H}=$ model class
- hypothesis $h \in \mathcal{H}=$ model
- hyperparameters : parameters of the model class (e.g : degree for polynomial)

Model and dataset

Train and Evaluate

Learn with part of the data and evaluate with the rest :

Model

- hypothesis space $\mathcal{H}=$ model class
- hypothesis $h \in \mathcal{H}=$ model
- hyperparameters : parameters of the model class (e.g : degree for polynomial)
- training set : to train candidate models (\neq model classes and \neq hyperparameters)

Model and dataset

Train and Evaluate

Learn with part of the data and evaluate with the rest :

Model

- hypothesis space $\mathcal{H}=$ model class
- hypothesis $h \in \mathcal{H}=$ model
- hyperparameters : parameters of the model class (e.g : degree for polynomial)
- training set : to train candidate models (\neq model classes and \neq hyperparameters)
- validation set : to evaluate candidate models and select the best

Model and dataset

Train and Evaluate

Learn with part of the data and evaluate with the rest

Model

- hypothesis space $\mathcal{H}=$ model class
- hypothesis $h \in \mathcal{H}=$ model
- hyperparameters : parameters of the model class (e.g : degree for polynomial)
- training set : to train candidate models (\neq model classes and \neq hyperparameters)
- validation set : to evaluate candidate models and select the best
- test set : to evaluate the selected model

Model and dataset

Train and Evaluate

Learn with part of the data and evaluate with the rest :

Model

- hypothesis space $\mathcal{H}=$ model class
- hypothesis $h \in \mathcal{H}=$ model
- hyperparameters : parameters of the model class (e.g : degree for polynomial)
- training set : to train candidate models (\neq model classes and \neq hyperparameters)
- validation set : to evaluate candidate models and select the best
- test set : to evaluate the selected model

k-fold cross-validation

- split the training set into k subsets
- iterate the three steps for all $i \in[1, k]$:
- take subset i out
- train with $k-1$ joint subsets
- validate with the subset i

Evaluation

Loss function
 $y=f(x)$ and $\hat{y}=h(x)$

Evaluation

> Loss function
> $y=f(x)$ and $\hat{y}=h(x)$
> $L(x, y, \hat{y})=$ Utility(using y given $x)$ - Utility(using \hat{y} given $x)$

Evaluation

> Loss function
> $y=f(x)$ and $\hat{y}=h(x)$
> $L(x, y, \hat{y})=$ Utility (using y given $x)-$ Utility (using \hat{y} given $x) \rightarrow$ simplification $: L(y, \hat{y})$

Evaluation

Loss function

$y=f(x)$ and $\hat{y}=h(x)$
$L(x, y, \hat{y})=$ Utility (using y given $x)-$ Utility (using \hat{y} given $x) \rightarrow$ simplification: $L(y, \hat{y})$ example : For a spam filter, $L($ spam, nospam $)=1$ and $L($ nospam, spam $)=10$

Evaluation

Loss function

$y=f(x)$ and $\hat{y}=h(x)$
$L(x, y, \hat{y})=$ Utility (using y given $x)-$ Utility (using \hat{y} given $x) \rightarrow$ simplification: $L(y, \hat{y})$ example : For a spam filter, $L($ spam, nospam $)=1$ and $L($ nospam, spam $)=10$

Usual loss functions

- Absolute-value loss : $L_{1}(y, \hat{y})=|y-\hat{y}|$

Evaluation

Loss function

$y=f(x)$ and $\hat{y}=h(x)$
$L(x, y, \hat{y})=$ Utility (using y given $x)-$ Utility (using \hat{y} given $x) \rightarrow$ simplification: $L(y, \hat{y})$
example : For a spam filter, $L($ spam, nospam $)=1$ and $L($ nospam, spam $)=10$

Usual loss functions

- Absolute-value loss : $L_{1}(y, \hat{y})=|y-\hat{y}|$
- Squared-error loss : $L_{2}(y, \hat{y})=(y-\hat{y})^{2}$

Evaluation

Loss function

$y=f(x)$ and $\hat{y}=h(x)$
$L(x, y, \hat{y})=$ Utility (using y given $x)-$ Utility (using \hat{y} given $x) \rightarrow$ simplification: $L(y, \hat{y})$
example : For a spam filter, $L($ spam, nospam $)=1$ and L (nospam, spam $)=10$

Usual loss functions

- Absolute-value loss : $L_{1}(y, \hat{y})=|y-\hat{y}|$
- Squared-error loss : $L_{2}(y, \hat{y})=(y-\hat{y})^{2}$
- $0 / 1$ loss : $L_{0 / 1}(y, \hat{y})= \begin{cases}0 & \text { if } y=\hat{y} \\ 1 & \text { else }\end{cases}$

Evaluation

Loss function

$y=f(x)$ and $\hat{y}=h(x)$
$L(x, y, \hat{y})=$ Utility (using y given $x)-$ Utility (using \hat{y} given $x) \rightarrow$ simplification: $L(y, \hat{y})$
example : For a spam filter, $L($ spam, nospam $)=1$ and L (nospam, spam $)=10$

Usual loss functions

- Absolute-value loss : $L_{1}(y, \hat{y})=|y-\hat{y}|$
- Squared-error loss : $L_{2}(y, \hat{y})=(y-\hat{y})^{2}$
- $0 / 1$ loss : $L_{0 / 1}(y, \hat{y})= \begin{cases}0 & \text { if } y=\hat{y} \\ 1 & \text { else }\end{cases}$

Generalization loss

$\operatorname{GenLoss}_{L}(h)=\sum_{(x, y)} L(y, h(x)) P(x, y)$

Evaluation

Loss function

$y=f(x)$ and $\hat{y}=h(x)$
$L(x, y, \hat{y})=$ Utility (using y given $x)-$ Utility (using \hat{y} given $x) \rightarrow$ simplification: $L(y, \hat{y})$
example : For a spam filter, $L($ spam, nospam $)=1$ and $L($ nospam, spam $)=10$

Empirical loss

Usual loss functions

- Absolute-value loss : $L_{1}(y, \hat{y})=|y-\hat{y}|$
- Squared-error loss : $L_{2}(y, \hat{y})=(y-\hat{y})^{2}$
- $0 / 1$ loss : $L_{0 / 1}(y, \hat{y})= \begin{cases}0 & \text { if } y=\hat{y} \\ 1 & \text { else }\end{cases}$

Generalization loss

$\operatorname{GenLoss}_{L}(h)=\sum_{(x, y)} L(y, h(x)) P(x, y)$

Evaluation

Loss function

$y=f(x)$ and $\hat{y}=h(x)$
$L(x, y, \hat{y})=$ Utility (using y given $x)-$ Utility (using \hat{y} given $x) \rightarrow$ simplification: $L(y, \hat{y})$
example : For a spam filter, $L($ spam, nospam $)=1$ and $L($ nospam, spam $)=10$

Empirical loss

Usual loss functions

- Absolute-value loss : $L_{1}(y, \hat{y})=|y-\hat{y}|$
- Squared-error loss : $L_{2}(y, \hat{y})=(y-\hat{y})^{2}$
- $0 / 1$ loss : $L_{0 / 1}(y, \hat{y})= \begin{cases}0 & \text { if } y=\hat{y} \\ 1 & \text { else }\end{cases}$
$\operatorname{EmpLoss}_{L, E}(h)=\sum_{(x, y) \in E} L(y, h(x)) \frac{1}{N}$
$($ with $|E|=N)$

Regularization

Ockham's razor dictates to prefer simplicity

Generalization loss

$$
\operatorname{GenLoss}_{L}(h)=\sum_{(x, y)} L(y, h(x)) P(x, y)
$$

Evaluation

Loss function

$y=f(x)$ and $\hat{y}=h(x)$
$L(x, y, \hat{y})=$ Utility (using y given $x)-$ Utility (using \hat{y} given $x) \rightarrow$ simplification: $L(y, \hat{y})$
example : For a spam filter, $L($ spam, nospam $)=1$ and $L($ nospam, spam $)=10$

Empirical loss

Usual loss functions

- Absolute-value loss : $L_{1}(y, \hat{y})=|y-\hat{y}|$
- Squared-error loss : $L_{2}(y, \hat{y})=(y-\hat{y})^{2}$
- $0 / 1$ loss : $L_{0 / 1}(y, \hat{y})= \begin{cases}0 & \text { if } y=\hat{y} \\ 1 & \text { else }\end{cases}$
$\operatorname{EmpLoss}_{L, E}(h)=\sum_{(x, y) \in E} L(y, h(x)) \frac{1}{N}$
$($ with $|E|=N)$

Regularization

Ockham's razor dictates to prefer simplicity

$$
\begin{aligned}
& \operatorname{Cost}(h)=\operatorname{EmpLoss}(h)+\lambda \operatorname{Complexity}(h) \\
& \hat{h}^{*}=\underset{h \in \mathcal{H}}{\operatorname{argmin}} \operatorname{Cost}(h)
\end{aligned}
$$

Learning failure

Realizability/Intractability

- Realizable : $f \in \mathcal{H}$

Learning failure

Realizability/Intractability

- Realizable : $f \in \mathcal{H}$
- Computationally tractable : there exists algorithm to explore \mathcal{H} with reasonable amount of time/resources.

Learning failure

Realizability/Intractability

- Realizable : $f \in \mathcal{H}$
- Computationally tractable : there exists algorithm to explore \mathcal{H} with reasonable amount of time/resources.

Dataset

f may be nondeterministic or noisy : different values of $f(x)$ for a same x

Learning failure

Realizability/Intractability

- Realizable : $f \in \mathcal{H}$
- Computationally tractable : there exists algorithm to explore \mathcal{H} with reasonable amount of time/resources.

Dataset

f may be nondeterministic or noisy : different values of $f(x)$ for a same x

Underfitting/Overfitting

- Overfitting : when a function pays too much attention to the particular data it is trained on \rightarrow doesn't generalize well.

Learning failure

Realizability/Intractability

- Realizable : $f \in \mathcal{H}$
- Computationally tractable : there exists algorithm to explore \mathcal{H} with reasonable amount of time/resources.

Dataset

f may be nondeterministic or noisy : different values of $f(x)$ for a same x

Underfitting/Overfitting

- Overfitting : when a function pays too much attention to the particular data it is trained on \rightarrow doesn't generalize well.
- Underfitting : when a function fails to find a pattern in the data.

Learning failure

Realizability/Intractability

- Realizable : $f \in \mathcal{H}$
- Computationally tractable : there exists algorithm to explore \mathcal{H} with reasonable amount of time/resources.

Dataset

f may be nondeterministic or noisy : different values of $f(x)$ for a same x

Underfitting/Overfitting

- Overfitting : when a function pays too much attention to the particular data it is trained on \rightarrow doesn't generalize well.
- Underfitting : when a function fails to find a pattern in the data.

Bias-Variance tradeoff

Learning failure

Realizability/Intractability

- Realizable : $f \in \mathcal{H}$
- Computationally tractable : there exists algorithm to explore \mathcal{H} with reasonable amount of time/resources.

Dataset

f may be nondeterministic or noisy : different values of $f(x)$ for a same x

Underfitting/Overfitting

- Overfitting : when a function pays too much attention to the particular data it is trained on \rightarrow doesn't generalize well.
- Underfitting : when a function fails to find a pattern in the data.

Bias-Variance tradeoff

- complex low-bias hypotheses that fit the training data well
- simple low-variance hypotheses that generalize better

Model classes

- Decision trees

Model classes

- Decision trees
- Linear regression

Model classes

- Decision trees
- Linear regression
- Linear/Logistic classification

Model classes

- Decision trees
- Linear regression
- Linear/Logistic classification
- Support Vector Machines

Model classes

- Decision trees
- Linear regression
- Linear/Logistic classification
- Support Vector Machines
- Neural Networks

Linear Regression and
Classification

Univariate linear regression

> Sample set
> $\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{N}, y_{N}\right)\right\} \subseteq \mathbb{R} \times \mathbb{R}$

Univariate linear regression

Sample set

$\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{N}, y_{N}\right)\right\} \subseteq \mathbb{R} \times \mathbb{R}$

Hypothesis

$h_{\vec{w}}(x)=w_{0}+w_{1} x$ with $\vec{w}=\left(w_{0}, w_{1}\right)$

Univariate linear regression

Sample set

$\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{N}, y_{N}\right)\right\} \subseteq \mathbb{R} \times \mathbb{R}$

Hypothesis

$h_{\vec{w}}(x)=w_{0}+w_{1} x$ with $\vec{w}=\left(w_{0}, w_{1}\right)$
Minimize loss
Normally distributed noise $\rightarrow L_{2}$ (Gauss)
$\operatorname{Loss}\left(h_{\vec{w}}\right)=\sum_{j=1}^{N} L_{2}\left(y_{j}, h_{\vec{w}}\left(x_{j}\right)\right)=\sum_{j=1}^{N}\left(y_{j}-\left(w_{0}+w_{1} x_{j}\right)\right)^{2}$
$\operatorname{Minimize} L(\vec{w})=\operatorname{Loss}\left(h_{\vec{w}}\right)$

Univariate linear regression

Sample set

$\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{N}, y_{N}\right)\right\} \subseteq \mathbb{R} \times \mathbb{R}$

Hypothesis
$h_{\vec{w}}(x)=w_{0}+w_{1} x$ with $\vec{w}=\left(w_{0}, w_{1}\right)$
Minimize loss
Normally distributed noise $\rightarrow L_{2}$ (Gauss)
$\operatorname{Loss}\left(h_{\vec{w}}\right)=\sum_{j=1}^{N} L_{2}\left(y_{j}, h_{\vec{w}}\left(x_{j}\right)\right)=\sum_{j=1}^{N}\left(y_{j}-\left(w_{0}+w_{1} x_{j}\right)\right)^{2}$
$\operatorname{Minimize} L(\vec{w})=\operatorname{Loss}\left(h_{\vec{w}}\right)$
Analytic solution
Show that the minimum of $L(\vec{w})$ is obtained for:

$$
w_{1}=\frac{\left(\sum x_{j}\right)\left(\sum y_{j}\right)-N\left(\sum x_{j} y_{j}\right)}{\left(\sum x_{j}\right)^{2}-N\left(\sum x_{j}^{2}\right)} \text { and } w_{0}=\frac{\left(\sum y_{j}\right)-w_{1}\left(\sum x_{j}\right)}{N}
$$

Gradient descent

Gradient descent

Algorithm

$w_{i} \leftarrow w_{i}-\alpha \frac{\partial L(\vec{w})}{\partial w_{i}}$ with α the learning rate

Gradient descent

Algorithm

$w_{i} \leftarrow w_{i}-\alpha \frac{\partial L(\vec{w})}{\partial w_{i}}$ with α the learning rate
Univariate gradient descent

$$
\begin{aligned}
& w_{0} \leftarrow w_{0}+\alpha \sum_{j=1}^{N}\left(y_{j}-h_{\vec{w}}\left(x_{j}\right)\right) \\
& w_{1} \leftarrow w_{1}+\alpha \sum_{j=1}^{N}\left(y_{j}-h_{\vec{w}}\left(x_{j}\right)\right) x_{j}
\end{aligned}
$$

Multivariable

Sample set

$\left\{\left(\overrightarrow{x_{1}}, y_{1}\right),\left(\overrightarrow{x_{2}}, y_{2}\right), \ldots,\left(\overrightarrow{x_{N}}, y_{N}\right)\right\} \subseteq \mathbb{R}^{d} \times \mathbb{R}$

Multivariable

Sample set

$\left\{\left(\overrightarrow{x_{1}}, y_{1}\right),\left(\overrightarrow{x_{2}}, y_{2}\right), \ldots,\left(\overrightarrow{x_{N}}, y_{N}\right)\right\} \subseteq \mathbb{R}^{d} \times \mathbb{R}$

Hypothesis

$h_{\vec{w}}\left(\vec{x}_{j}\right)=\vec{w} \vec{x}_{j}=\sum_{i=0}^{d} w_{i} x_{j i}$ with :

- $\vec{w}=\left(w_{0}, w_{1}, \ldots, w_{d}\right) \in \mathbb{R}^{d+1}$
- $\vec{x}_{j}=\left(x_{j 1}, x_{j 2}, \ldots, x_{j d}\right) \in \mathbb{R}^{d}$
- $x_{j 0}=1$

Multivariable

Gradient descent

Sample set

$\left\{\left(\overrightarrow{x_{1}}, y_{1}\right),\left(\overrightarrow{x_{2}}, y_{2}\right), \ldots,\left(\overrightarrow{x_{N}}, y_{N}\right)\right\} \subseteq \mathbb{R}^{d} \times \mathbb{R}$

Hypothesis

$$
w_{i} \leftarrow w_{i}-\alpha \sum_{j=1}^{N}\left(y_{j}-h_{\vec{w}}\left(\vec{x}_{j}\right)\right) x_{j i}
$$

$h_{\vec{w}}\left(\overrightarrow{x_{j}}\right)=\vec{w} \vec{x}_{j}=\sum_{i=0}^{d} w_{i} x_{j i}$ with :

- $\vec{w}=\left(w_{0}, w_{1}, \ldots, w_{d}\right) \in \mathbb{R}^{d+1}$
- $\vec{x}_{j}=\left(x_{j 1}, x_{j 2}, \ldots, x_{j d}\right) \in \mathbb{R}^{d}$
- $x_{j 0}=1$

Multivariable

Gradient descent

Sample set

$\left\{\left(\overrightarrow{x_{1}}, y_{1}\right),\left(\overrightarrow{x_{2}}, y_{2}\right), \ldots,\left(\overrightarrow{x_{N}}, y_{N}\right)\right\} \subseteq \mathbb{R}^{d} \times \mathbb{R}$

Hypothesis

$h_{\vec{w}}\left(\overrightarrow{x_{j}}\right)=\vec{w} \vec{x}_{j}=\sum_{i=0}^{d} w_{i} x_{j i}$ with:

- $\vec{w}=\left(w_{0}, w_{1}, \ldots, w_{d}\right) \in \mathbb{R}^{d+1}$
- $\vec{x}_{j}=\left(x_{j 1}, x_{j 2}, \ldots, x_{j d}\right) \in \mathbb{R}^{d}$
- $x_{j 0}=1$

$$
w_{i} \leftarrow w_{i}-\alpha \sum_{j=1}^{N}\left(y_{j}-h_{\vec{w}}\left(\vec{x}_{j}\right)\right) x_{j i}
$$

Analytic solution

\boldsymbol{X} : matrix of inputs (each row is an \vec{x}_{j}), $\boldsymbol{y}:$ vector of outputs (each row is a y_{j})

$$
\begin{aligned}
& L(\boldsymbol{w})=\|\boldsymbol{X} \cdot \boldsymbol{w}-\boldsymbol{y}\|^{2} \\
& \nabla_{\boldsymbol{w}} L(\boldsymbol{w})=2 \boldsymbol{X}^{\top} .(\boldsymbol{X} \cdot \boldsymbol{w}-\boldsymbol{y})=\mathbf{0}
\end{aligned}
$$

$$
\boldsymbol{w}^{*}=\left(\boldsymbol{X}^{\top} \cdot \boldsymbol{X}\right)^{-1} \cdot \boldsymbol{X}^{\top} \cdot \boldsymbol{y}: \text { normal equation }
$$

Epoch poc poc

Batch gradient descent

$w_{i} \leftarrow w_{i}-\alpha \sum_{j=1}^{N}\left(y_{j}-h_{\vec{w}}\left(\vec{x}_{j}\right)\right) x_{j i}$ (also called deterministic gradient descent)

Epoch poc poc

Batch gradient descent

$w_{i} \leftarrow w_{i}-\alpha \sum_{j=1}^{N}\left(y_{j}-h_{\vec{w}}\left(\vec{x}_{j}\right)\right) x_{j i}$ (also called deterministic gradient descent)

Stochastic gradient descent (SGD)

1. select and remove a minibatch of m out of N training examples (randomly)
2. compute a step $w_{i} \leftarrow w_{i}-\alpha \sum_{j=1}^{m}\left(y_{j}-h_{\vec{w}}\left(\vec{x}_{j}\right)\right) x_{j i}$
3. iterate until no more training examples

Epoch poc poc

Batch gradient descent

$w_{i} \leftarrow w_{i}-\alpha \sum_{j=1}^{N}\left(y_{j}-h_{\vec{w}}\left(\vec{x}_{j}\right)\right) x_{j i}$ (also called deterministic gradient descent)

Stochastic gradient descent (SGD)

1. select and remove a minibatch of m out of N training examples (randomly)
2. compute a step $w_{i} \leftarrow w_{i}-\alpha \sum_{j=1}^{m}\left(y_{j}-h_{\vec{w}}\left(\vec{x}_{j}\right)\right) x_{j i}$
3. iterate until no more training examples

Epoch

A step that covers all N training examples

Epoch poc poc

Batch gradient descent

$w_{i} \leftarrow w_{i}-\alpha \sum_{j=1}^{N}\left(y_{j}-h_{\vec{w}}\left(\vec{x}_{j}\right)\right) x_{j i}$ (also called deterministic gradient descent)

Stochastic gradient descent (SGD)

1. select and remove a minibatch of m out of N training examples (randomly)
2. compute a step $w_{i} \leftarrow w_{i}-\alpha \sum_{j=1}^{m}\left(y_{j}-h_{\vec{w}}\left(\vec{x}_{j}\right)\right) x_{j i}$
3. iterate until no more training examples

Epoch

A step that covers all N training examples
Complete algorithm
Iterate E epochs until convergence.

Regularization

Overfitting

In high-dimensional spaces, some irrelevant dimension might appear to be useful

Regularization

Overfitting

In high-dimensional spaces, some irrelevant dimension might appear to be useful

Regularization

$\operatorname{Cost}(h)=\operatorname{EmpLoss}(h)+\lambda$ Complexity (h)

Regularization

Overfitting

In high-dimensional spaces, some irrelevant dimension might appear to be useful

Regularization

$\operatorname{Cost}(h)=\operatorname{EmpLoss}(h)+\lambda \operatorname{Complexity}(h)$
For linear functions
$\operatorname{Complexity}\left(h_{\vec{w}}\right)=L_{q}(\vec{w})=\sum_{i=0}^{d}\left|w_{i}\right|^{q}$
Usually, we use $q=1: L_{1}$ regularization \rightarrow produces sparse model (remove attributes)

Linear classification

Linear classification

Sample set
$\left\{\left(\overrightarrow{x_{1}}, y_{1}\right),\left(\overrightarrow{x_{2}}, y_{2}\right), \ldots,\left(\overrightarrow{x_{N}}, y_{N}\right)\right\} \subseteq \mathbb{R}^{d} \times\{0,1\}$
Hypothesis
The decision boundary is a linear separator.

Hard threshold linear classifier

$\operatorname{Threshold}(z)=\left\{\begin{array}{l}0 \text { if } z<0 \\ 1 \text { else }\end{array}\right.$

Hard threshold linear classifier

Hypothesis
$h_{\vec{w}}\left(\overrightarrow{x_{j}}\right)=$ Threshold $\left(\vec{w} \cdot \overrightarrow{x_{j}}\right)$ with $\vec{w} \in \mathbb{R}^{d+1}$
$\operatorname{Threshold}(z)=\left\{\begin{array}{l}0 \text { if } z<0 \\ 1 \text { else }\end{array}\right.$

Hard threshold linear classifier

Hypothesis
$h_{\vec{w}}\left(\overrightarrow{x_{j}}\right)=$ Threshold $\left(\vec{w} \cdot \overrightarrow{x_{j}}\right)$ with $\vec{w} \in \mathbb{R}^{d+1}$
Perceptron learning rule

$$
w_{i} \leftarrow w_{i}+\alpha\left(y_{j}-h_{\vec{w}}\left(\overrightarrow{x_{j}}\right)\right) x_{j i}
$$

$\operatorname{Threshold}(z)=\left\{\begin{array}{l}0 \text { if } z<0 \\ 1 \text { else }\end{array}\right.$

Hard threshold linear classifier

Hypothesis

$h_{\vec{w}}\left(\overrightarrow{x_{j}}\right)=$ Threshold $\left(\vec{w} \cdot \overrightarrow{x_{j}}\right)$ with $\vec{w} \in \mathbb{R}^{d+1}$

Perceptron learning rule

$$
w_{i} \leftarrow w_{i}+\alpha\left(y_{j}-h_{\vec{w}}\left(\overrightarrow{x_{j}}\right)\right) x_{j i}
$$

Issue

May not converge if data is not clearly separable (without noise)
$\operatorname{Threshold}(z)=\left\{\begin{array}{l}0 \text { if } z<0 \\ 1 \text { else }\end{array}\right.$

Hard threshold linear classifier

$\operatorname{Threshold}(z)=\left\{\begin{array}{l}0 \text { if } z<0 \\ 1 \text { else }\end{array}\right.$

Hypothesis

$h_{\vec{w}}\left(\overrightarrow{x_{j}}\right)=$ Threshold $\left(\vec{w} \cdot \overrightarrow{x_{j}}\right)$ with $\vec{w} \in \mathbb{R}^{d+1}$

Perceptron learning rule

$$
w_{i} \leftarrow w_{i}+\alpha\left(y_{j}-h_{\vec{w}}\left(\overrightarrow{x_{j}}\right)\right) x_{j i}
$$

Issue

May not converge if data is not clearly separable (without noise)

Dynamic learning rate
$\alpha(t)=\frac{c}{c+t}$ (decrease with time elapsing)
with c a fairly large constant

Hard threshold linear classifier

$\operatorname{Threshold}(z)=\left\{\begin{array}{l}0 \text { if } z<0 \\ 1 \text { else }\end{array}\right.$

Hypothesis

$h_{\vec{w}}\left(\overrightarrow{x_{j}}\right)=$ Threshold $\left(\vec{w} \cdot \overrightarrow{x_{j}}\right)$ with $\vec{w} \in \mathbb{R}^{d+1}$

Perceptron learning rule

$$
w_{i} \leftarrow w_{i}+\alpha\left(y_{j}-h_{\vec{w}}\left(\overrightarrow{x_{j}}\right)\right) x_{j i}
$$

Issue

May not converge if data is not clearly separable (without noise)

Dynamic learning rate

$\alpha(t)=\frac{c}{c+t}$ (decrease with time elapsing)
with c a fairly large constant
Technically, we require that :
$\sum_{t=1}^{\infty} \alpha(t)=\infty$ and $\sum_{t=1}^{\infty} \alpha(t)^{2}<\infty$

Logistic linear classifier

$$
\operatorname{Logistic}(z)=\frac{1}{1+e^{-(z-\mu) / s}}
$$

μ : location parameter (here $\mu=0$)
s : scale parameter (here $s=1$)

Logistic linear classifier

$$
\operatorname{Logistic}(z)=\frac{1}{1+e^{-(z-\mu) / s}}
$$

μ : location parameter (here $\mu=0$)
$s:$ scale parameter (here $s=1$)

Hypothesis

$h_{\vec{w}}\left(\overrightarrow{x_{j}}\right)=\operatorname{Logistic}\left(\vec{w} \cdot \overrightarrow{x_{j}}\right)$ with $\vec{w} \in \mathbb{R}^{d+1}$

Logistic linear classifier

$$
\operatorname{Logistic}(z)=\frac{1}{1+e^{-(z-\mu) / s}}
$$

μ : location parameter (here $\mu=0$)
$s:$ scale parameter (here $s=1$)

Hypothesis

$h_{\vec{w}}\left(\overrightarrow{x_{j}}\right)=\operatorname{Logistic}\left(\vec{w} \cdot \overrightarrow{x_{j}}\right)$ with $\vec{w} \in \mathbb{R}^{d+1}$
Why though?
Logistic function is differentiable in 0 !

Logistic linear classifier

$$
\operatorname{Logistic}(z)=\frac{1}{1+e^{-(z-\mu) / s}}
$$

μ : location parameter (here $\mu=0$)
s : scale parameter (here $s=1$)

Hypothesis

$h_{\vec{w}}\left(\overrightarrow{x_{j}}\right)=\operatorname{Logistic}\left(\vec{w} \cdot \overrightarrow{x_{j}}\right)$ with $\vec{w} \in \mathbb{R}^{d+1}$

Why though?

Logistic function is differentiable in 0 !

Gradient descent

Find the logistic learning rule from the general formula of gradient descent: $w_{i} \leftarrow w_{i}+\alpha \frac{\partial L(\vec{w})}{\partial w_{i}}$ (for a single example ($\vec{x}, y)$).

Logistic linear classifier

$$
\operatorname{Logistic}(z)=\frac{1}{1+e^{-(z-\mu) / s}}
$$

μ : location parameter (here $\mu=0$)
s : scale parameter (here $s=1$)

Hypothesis

$h_{\vec{w}}\left(\vec{x}_{j}\right)=\operatorname{Logistic}\left(\vec{w} \cdot \vec{x}_{j}\right)$ with $\vec{w} \in \mathbb{R}^{d+1}$

Why though?

Logistic function is differentiable in 0 !

Gradient descent

Find the logistic learning rule from the general formula of gradient descent: $w_{i} \leftarrow w_{i}+\alpha \frac{\partial L(\vec{w})}{\partial w_{i}}$ (for a single example (\vec{x}, y)).

Logistic learning rule

$$
w_{i} \leftarrow w_{i}+\alpha\left(y_{j}-h_{\vec{w}}\left(\vec{x}_{j}\right)\right) h_{\vec{w}}\left(\vec{x}_{j}\right)\left(1-h_{\vec{w}}\left(\vec{x}_{j}\right)\right) x_{j i}
$$

The kernel trick

```
What if ..
the dataset is not linearly
separable?
```


The kernel trick

What if ..
the dataset is not linearly separable?

Idea

Map into another space (generally higher dimensional) where it is linearly separable : $\vec{x} \mapsto \phi(\vec{x})$

The kernel trick

What if ..
the dataset is not linearly separable?

Idea

Map into another space (generally higher dimensional) where it is linearly separable : $\vec{x} \mapsto \phi(\vec{x})$

Change the space
Find a (possibly higher dimensional) space in which this dataset is linearly separable.

The kernel trick

What if ..
the dataset is not linearly separable?

Idea

Map into another space (generally higher dimensional) where it is linearly separable : $\vec{x} \mapsto \phi(\vec{x})$

Change the space
Find a (possibly higher dimensional) space in which this dataset is linearly separable.

Kernel function

$$
K\left(\overrightarrow{x_{k}}, \overrightarrow{x_{j}}\right)=\phi\left(\overrightarrow{x_{k}}\right) \cdot \phi\left(\overrightarrow{x_{j}}\right)
$$

The kernel trick

What if ..
the dataset is not linearly separable?

Idea

Map into another space (generally higher dimensional) where it is linearly separable : $\vec{x} \mapsto \phi(\vec{x})$

Change the space

Find a (possibly higher dimensional) space in which this dataset is linearly separable.

Kernel function

$K\left(\overrightarrow{x_{k}}, \overrightarrow{x_{j}}\right)=\phi\left(\overrightarrow{x_{k}}\right) \cdot \phi\left(\overrightarrow{x_{j}}\right)$

Reformulation

We can show that $\vec{w}=\sum_{k=1}^{N} \delta_{k} \overrightarrow{x_{k}}$ then
$h_{\vec{w}}\left(\vec{x}_{j}\right)=\sum_{k=1}^{N} \delta_{k} \overrightarrow{x_{k}} \cdot \vec{x}_{j} \mapsto \sum_{k=1}^{N} \delta_{k} \phi\left(\overrightarrow{x_{k}}\right) \cdot \phi\left(\overrightarrow{x_{j}}\right)=\sum_{k=1}^{N} \delta_{k} K\left(\vec{x}_{k}, \overrightarrow{x_{j}}\right)$

The kernel trick

Linear regression in the new space
$h_{\vec{w}}\left(\phi\left(\overrightarrow{x_{j}}\right)\right)=\sum_{k=1}^{N} \delta_{k} K\left(\overrightarrow{x_{k}}, \overrightarrow{x_{j}}\right)$

The kernel trick

Linear regression in the new space
$h_{\vec{w}}\left(\phi\left(\overrightarrow{x_{j}}\right)\right)=\sum_{k=1}^{N} \delta_{k} K\left(\overrightarrow{x_{k}}, \overrightarrow{x_{j}}\right)$
Kernel matrix
$K \in \mathbb{R}^{N} \times \mathbb{R}^{N}$ s.t $K_{i j}=K\left(\vec{x}_{i}, \vec{x}_{j}\right)$

The kernel trick

Linear regression in the new space
$h_{\vec{w}}\left(\phi\left(\overrightarrow{x_{j}}\right)\right)=\sum_{k=1}^{N} \delta_{k} K\left(\overrightarrow{x_{k}}, \overrightarrow{x_{j}}\right)$
Kernel matrix
$K \in \mathbb{R}^{N} \times \mathbb{R}^{N}$ s.t $K_{i j}=K\left(\vec{x}_{i}, \vec{x}_{j}\right)$

Algorithm

We compute $\vec{\delta}$ instead of \vec{w} :
$\delta_{i} \leftarrow \delta_{i}+\alpha \gamma_{i}$

The kernel trick

Linear regression in the new space
$h_{\vec{w}}\left(\phi\left(\overrightarrow{x_{j}}\right)\right)=\sum_{k=1}^{N} \delta_{k} K\left(\overrightarrow{x_{k}}, \overrightarrow{x_{j}}\right)$
Kernel matrix
$K \in \mathbb{R}^{N} \times \mathbb{R}^{N}$ s.t $K_{i j}=K\left(\vec{x}_{i}, \vec{x}_{j}\right)$

Algorithm

We compute $\vec{\delta}$ instead of \vec{w} :
$\delta_{i} \leftarrow \delta_{i}+\alpha \gamma_{i}$

Popular kernel functions

- Linear: $K(\vec{x}, \vec{z})=\vec{x} . \vec{z}$
- Polynomial : $K(\vec{x}, \vec{z})=(1+\vec{x} . \vec{z})^{d}$
- Radial Basis Function (RBF) :

$$
K(\vec{x}, \vec{z})=e^{\frac{-\|\vec{x}-\vec{z}\|^{2}}{\sigma^{2}}}
$$

- Laplacian Kernel : $K(\vec{x}, \vec{z})=e^{\frac{-\|\vec{x}-\vec{\sigma}\|}{\sigma}}$
- Sigmoïd Kernel : $K(\vec{x}, \vec{z})=\tanh (a \vec{x} . \vec{z}+b)$

demo

Linear Regression and Classification - Summary

- Linear regression is in pratice computed with gradient descent

Linear Regression and Classification - Summary

- Linear regression is in pratice computed with gradient descent
- A linear classifier with a hard threshold is called a perceptron and can be learnt with gradient descent if data is linearly separable

Linear Regression and Classification - Summary

- Linear regression is in pratice computed with gradient descent
- A linear classifier with a hard threshold is called a perceptron and can be learnt with gradient descent if data is linearly separable
- A decreasing learning rate improve convergence

Linear Regression and Classification - Summary

- Linear regression is in pratice computed with gradient descent
- A linear classifier with a hard threshold is called a perceptron and can be learnt with gradient descent if data is linearly separable
- A decreasing learning rate improve convergence
- Logistic regression replace the hard threshold by the logistic function

Linear Regression and Classification - Summary

- Linear regression is in pratice computed with gradient descent
- A linear classifier with a hard threshold is called a perceptron and can be learnt with gradient descent if data is linearly separable
- A decreasing learning rate improve convergence
- Logistic regression replace the hard threshold by the logistic function
- The kernel trick transforms input data to a higher-dimensional space where a linear separator may exists

Linear Regression and Classification - Summary

- Linear regression is in pratice computed with gradient descent
- A linear classifier with a hard threshold is called a perceptron and can be learnt with gradient descent if data is linearly separable
- A decreasing learning rate improve convergence
- Logistic regression replace the hard threshold by the logistic function
- The kernel trick transforms input data to a higher-dimensional space where a linear separator may exists

To go further ...

- Other non-parametric models : nearest neighbors and locally weighted regression

Linear Regression and Classification - Summary

- Linear regression is in pratice computed with gradient descent
- A linear classifier with a hard threshold is called a perceptron and can be learnt with gradient descent if data is linearly separable
- A decreasing learning rate improve convergence
- Logistic regression replace the hard threshold by the logistic function
- The kernel trick transforms input data to a higher-dimensional space where a linear separator may exists

To go further...

- Other non-parametric models : nearest neighbors and locally weighted regression
- Support Vector Machines

Deep Learning

Why is deep learning successful?

Decision list

Deep learning network

Why is deep learning successful?

Shallow
Short computation path

Decision list

No interaction
No complex interaction between inputs

Deep learning network

Deep
Long computation path and complex interactions between many inputs

Deep Learning

Type of networks

- feedforward network : directed acyclic graph
- recurrent network: loops computing intermediate or final output

Deep Learning

Type of networks

- feedforward network : directed acyclic graph
- recurrent network : loops computing intermediate or final output

Unit (a.k.a. Artificial Neuron)

- g_{j} : activation function of unit j
- \vec{w}_{j} : weights of unit j

Deep Learning

Type of networks

- feedforward network : directed acyclic graph
- recurrent network : loops computing intermediate or final output

Unit (a.k.a. Artificial Neuron)

- g_{j} : activation function of unit j
- \vec{w}_{j} : weights of unit j

Deep Learning

Type of networks

- feedforward network : directed acyclic graph
- recurrent network : loops computing intermediate or final output

Unit (a.k.a. Artificial Neuron)

- g_{j} : activation function of unit j
- \vec{w}_{j} : weights of unit j

Deep Learning

Type of networks

- feedforward network : directed acyclic graph
- recurrent network: loops computing intermediate or final output

Activation functions

- Logistic or Sigmoid : $\sigma(x)=\frac{1}{1+e^{-x}}$
- ReLU (Rectified Linear Unit) : $\operatorname{ReLU}(x)=\max (0, x)$

Unit (a.k.a. Artificial Neuron)

- g_{j} : activation function of unit j
- \vec{w}_{j} : weights of unit j

Deep Learning

Type of networks

- feedforward network : directed acyclic graph
- recurrent network: loops computing intermediate or final output

Unit (a.k.a. Artificial Neuron)

- g_{j} : activation function of unit j
- \vec{w}_{j} : weights of unit j

Deep Learning

Type of networks

- feedforward network : directed acyclic graph
- recurrent network: loops computing intermediate or final output

Unit (a.k.a. Artificial Neuron)

- g_{j} : activation function of unit j
- \vec{w}_{j} : weights of unit j

Deep Learning

Type of networks

- feedforward network : directed acyclic graph
- recurrent network: loops computing intermediate or final output

Unit (a.k.a. Artificial Neuron)

- g_{j} : activation function of unit j
- \vec{w}_{j} : weights of unit j

Activation functions

- Logistic or Sigmoid : $\sigma(x)=\frac{1}{1+e^{-x}}$
- ReLU (Rectified Linear Unit) : $\operatorname{ReLU}(x)=\max (0, x)$
- Softplus (smooth ReLU) : softplus $(x)=\log \left(1+e^{x}\right)$
- tanh $: \tanh (x)=\frac{e^{2 x}-1}{e^{2 x}+1}(=2 \sigma(2 x)-1)$

Universal approximation theorem
A network with just two layers (one non-linear and one linear) can approximate any continuous function to an arbitrary degree of accuracy.

An example

Example

An example

Example

Forward computation

$$
\begin{aligned}
\hat{y}= & g_{5}\left(w_{0,5}+w_{3,5} a_{3}+w_{4,5} a_{4}\right) \\
\hat{y}= & g_{5}\left(w_{0,5}+w_{3,5} g_{3}\left(w_{0,3}+w_{1,3} x_{1}+w_{2,3} x_{2}\right)\right. \\
& \left.\quad+w_{4,5} g_{4}\left(w_{0,4}+w_{1,4} x_{1}+w_{2,4} x_{2}\right)\right)
\end{aligned}
$$

An example

Example

Forward computation

$$
\begin{aligned}
\hat{y}= & g_{5}\left(w_{0,5}+w_{3,5} a_{3}+w_{4,5} a_{4}\right) \\
\hat{y}= & g_{5}\left(w_{0,5}+w_{3,5} g_{3}\left(w_{0,3}+w_{1,3} x_{1}+w_{2,3} x_{2}\right)\right. \\
& \left.\quad+w_{4,5} g_{4}\left(w_{0,4}+w_{1,4} x_{1}+w_{2,4} x_{2}\right)\right)
\end{aligned}
$$

$$
h_{W}(\boldsymbol{x})=g^{(2)}\left(\boldsymbol{W}^{(2)} g^{(1)}\left(\boldsymbol{W}^{(1)} \boldsymbol{x}\right)\right)
$$

An example

Example

Gradient descent

$\operatorname{Loss}\left(h_{w}\right)=L_{2}\left(y, h_{w}(x)\right)=(y-\hat{y})^{2}$

Forward computation

$$
\begin{aligned}
\hat{y}= & g_{5}\left(w_{0,5}+w_{3,5} a_{3}+w_{4,5} a_{4}\right) \\
\hat{y}= & g_{5}\left(w_{0,5}+w_{3,5} g_{3}\left(w_{0,3}+w_{1,3} x_{1}+w_{2,3} x_{2}\right)\right. \\
& \left.\quad+w_{4,5} g_{4}\left(w_{0,4}+w_{1,4} x_{1}+w_{2,4} x_{2}\right)\right)
\end{aligned}
$$

$$
h_{W}(\boldsymbol{x})=g^{(2)}\left(\boldsymbol{W}^{(2)} g^{(1)}\left(\boldsymbol{W}^{(1)} \boldsymbol{x}\right)\right)
$$

An example

Example

Gradient descent

$\operatorname{Loss}\left(h_{w}\right)=L_{2}\left(y, h_{w}(x)\right)=(y-\hat{y})^{2}$
Output layer

$$
\frac{\partial \operatorname{Loss}(h w)}{\partial w_{3,5}}=\ldots ?
$$

Forward computation

$$
\begin{aligned}
\hat{y}= & g_{5}\left(w_{0,5}+w_{3,5} a_{3}+w_{4,5} a_{4}\right) \\
\hat{y}= & g_{5}\left(w_{0,5}+w_{3,5} g_{3}\left(w_{0,3}+w_{1,3} x_{1}+w_{2,3} x_{2}\right)\right. \\
& \left.\quad+w_{4,5} g_{4}\left(w_{0,4}+w_{1,4} x_{1}+w_{2,4} x_{2}\right)\right)
\end{aligned}
$$

$$
h_{W}(\boldsymbol{x})=g^{(2)}\left(\boldsymbol{W}^{(2)} g^{(1)}\left(\boldsymbol{W}^{(1)} \boldsymbol{x}\right)\right)
$$

An example

Example

Gradient descent

$\operatorname{Loss}\left(h_{w}\right)=L_{2}\left(y, h_{w}(x)\right)=(y-\hat{y})^{2}$
Output layer
$\frac{\partial \operatorname{Loss}(h w)}{\partial w_{3,5}}=\ldots$

$$
-2(y-\hat{y}) g_{5}^{\prime}\left(w_{0,5}+w_{3,5} a_{3}+w_{4,5} a_{4}\right) a_{3}=\Delta_{5} a_{3}
$$

Forward computation

$$
\begin{aligned}
\hat{y}= & g_{5}\left(w_{0,5}+w_{3,5} a_{3}+w_{4,5} a_{4}\right) \\
\hat{y}= & g_{5}\left(w_{0,5}+w_{3,5} g_{3}\left(w_{0,3}+w_{1,3} x_{1}+w_{2,3} x_{2}\right)\right. \\
& \left.\quad+w_{4,5} g_{4}\left(w_{0,4}+w_{1,4} x_{1}+w_{2,4} x_{2}\right)\right)
\end{aligned}
$$

$$
h_{W}(\boldsymbol{x})=g^{(2)}\left(\boldsymbol{W}^{(2)} g^{(1)}\left(\boldsymbol{W}^{(1)} \boldsymbol{x}\right)\right)
$$

An example

Example

Forward computation

$$
\begin{aligned}
\hat{y}= & g_{5}\left(w_{0,5}+w_{3,5} a_{3}+w_{4,5} a_{4}\right) \\
\hat{y}= & g_{5}\left(w_{0,5}+w_{3,5} g_{3}\left(w_{0,3}+w_{1,3} x_{1}+w_{2,3} x_{2}\right)\right. \\
& \left.\quad+w_{4,5} g_{4}\left(w_{0,4}+w_{1,4} x_{1}+w_{2,4} x_{2}\right)\right)
\end{aligned}
$$

Gradient descent

$\operatorname{Loss}\left(h_{w}\right)=L_{2}\left(y, h_{w}(x)\right)=(y-\hat{y})^{2}$
Output layer
$\frac{\partial \operatorname{Loss}(h w)}{\partial w_{3,5}}=\ldots$

$$
-2(y-\hat{y}) g_{5}^{\prime}\left(w_{0,5}+w_{3,5} a_{3}+w_{4,5} a_{4}\right) a_{3}=\Delta_{5} a_{3}
$$

Hidden layer

$$
\frac{\partial \operatorname{Loss}\left(h_{w}\right)}{\partial w_{1,3}}=\ldots ?
$$

$$
h_{\boldsymbol{W}}(\boldsymbol{x})=g^{(2)}\left(\boldsymbol{W}^{(2)} g^{(1)}\left(\boldsymbol{W}^{(1)} \boldsymbol{x}\right)\right)
$$

An example

Example

Forward computation

$$
\begin{aligned}
\hat{y}= & g_{5}\left(w_{0,5}+w_{3,5} a_{3}+w_{4,5} a_{4}\right) \\
\hat{y}= & g_{5}\left(w_{0,5}+w_{3,5} g_{3}\left(w_{0,3}+w_{1,3} x_{1}+w_{2,3} x_{2}\right)\right. \\
& \left.\quad+w_{4,5} g_{4}\left(w_{0,4}+w_{1,4} x_{1}+w_{2,4} x_{2}\right)\right)
\end{aligned}
$$

Gradient descent

$\operatorname{Loss}\left(h_{w}\right)=L_{2}\left(y, h_{w}(x)\right)=(y-\hat{y})^{2}$
Output layer
$\frac{\partial \operatorname{Loss}(h w)}{\partial w_{3,5}}=\ldots$

$$
-2(y-\hat{y}) g_{5}^{\prime}\left(w_{0,5}+w_{3,5} a_{3}+w_{4,5} a_{4}\right) a_{3}=\Delta_{5} a_{3}
$$

Hidden layer

$$
\frac{\partial \operatorname{Loss}(h w)}{\partial w_{1,3}}=\ldots
$$

$$
\Delta_{5} w_{3,5} g_{3}^{\prime}\left(w_{0,3}+w_{1,3} x_{1}+w_{2,3} x_{2}\right) x_{1}=\Delta_{3} x_{1}
$$

$$
h_{W}(\boldsymbol{x})=g^{(2)}\left(\boldsymbol{W}^{(2)} g^{(1)}\left(\boldsymbol{W}^{(1)} \boldsymbol{x}\right)\right)
$$

An example

Example

Forward computation

$$
\begin{aligned}
\hat{y}= & g_{5}\left(w_{0,5}+w_{3,5} a_{3}+w_{4,5} a_{4}\right) \\
\hat{y}= & g_{5}\left(w_{0,5}+w_{3,5} g_{3}\left(w_{0,3}+w_{1,3} x_{1}+w_{2,3} x_{2}\right)\right. \\
& \left.\quad+w_{4,5} g_{4}\left(w_{0,4}+w_{1,4} x_{1}+w_{2,4} x_{2}\right)\right)
\end{aligned}
$$

Gradient descent

$\operatorname{Loss}\left(h_{w}\right)=L_{2}\left(y, h_{w}(x)\right)=(y-\hat{y})^{2}$
Output layer
$\frac{\partial \operatorname{Loss}(h w)}{\partial w_{3,5}}=\ldots$

$$
-2(y-\hat{y}) g_{5}^{\prime}\left(w_{0,5}+w_{3,5} a_{3}+w_{4,5} a_{4}\right) a_{3}=\Delta_{5} a_{3}
$$

Hidden layer

$\frac{\partial \operatorname{Loss}(h w)}{\partial w_{1,3}}=\ldots$
$\Delta_{5} w_{3,5} g_{3}^{\prime}\left(w_{0,3}+w_{1,3} x_{1}+w_{2,3} x_{2}\right) x_{1}=\Delta_{3} x_{1}$
Vanishing gradient
When $g_{i}^{\prime}\left(i n_{i}\right) \approx 0 \rightarrow$ learning stops

$$
h_{W}(\boldsymbol{x})=g^{(2)}\left(\boldsymbol{W}^{(2)} g^{(1)}\left(\boldsymbol{W}^{(1)} \boldsymbol{x}\right)\right)
$$

Learning algorithms - Backpropagation

Learning algorithms - Backpropagation

Learning algorithms - Backpropagation

h_{j} : message from node h to node j

$$
\left(h_{j}=h\left(f_{h}, g_{h}\right)\right)
$$

Contribution of h on L

$$
\frac{\partial L}{\partial h}=\frac{\partial L}{\partial h_{j}}+\frac{\partial L}{\partial h_{k}}
$$

Backpropagate

$$
\frac{\partial L}{\partial f_{h}}=\frac{\partial L}{\partial h} \frac{\partial h}{\partial f_{h}} \text { and } \frac{\partial L}{\partial g_{h}}=\frac{\partial L}{\partial h} \frac{\partial h}{\partial g_{h}}
$$

- $\frac{\partial L}{\partial h}$: already computed at previous step
- $\frac{\partial h}{\partial f_{h}}$: specific to the type of node h

Learning algorithms - Backpropagation

Backpropagation

h_{j} : message from node h to node j

$$
\left(h_{j}=h\left(f_{h}, g_{h}\right)\right)
$$

Contribution of h on L

$$
\frac{\partial L}{\partial h}=\frac{\partial L}{\partial h_{j}}+\frac{\partial L}{\partial h_{k}}
$$

Backpropagate

$$
\frac{\partial L}{\partial f_{h}}=\frac{\partial L}{\partial h} \frac{\partial h}{\partial f_{h}} \text { and } \frac{\partial L}{\partial g_{h}}=\frac{\partial L}{\partial h} \frac{\partial h}{\partial g_{h}}
$$

- $\frac{\partial L}{\partial h}$: already computed at previous step
- $\frac{\partial h}{\partial f_{h}}$: specific to the type of node h

Until ..

.. we reach a node corresponding to a parameter $w: \frac{\partial L}{\partial w} \rightarrow$ update w

Learning algorithms - Enhancements

General gradient descent
$\boldsymbol{W} \leftarrow \boldsymbol{W}-\alpha \nabla{ }_{\omega} L(\boldsymbol{W})$

Learning algorithms - Enhancements

General gradient descent
$\boldsymbol{W} \leftarrow \boldsymbol{W}-\alpha \nabla{ }_{\omega} L(\boldsymbol{W})$

Batches

- When \boldsymbol{W} dimensionality and the training set are very large \rightarrow minibatch
- Gradient contributions of each batch are independent \rightarrow parallel computing (GPU or TPU)

Learning algorithms - Enhancements

General gradient descent
$\boldsymbol{W} \leftarrow \boldsymbol{W}-\alpha \nabla{ }_{\omega} L(\boldsymbol{W})$

Batches

- When \boldsymbol{W} dimensionality and the training set are very large \rightarrow minibatch
- Gradient contributions of each batch are independent \rightarrow parallel computing (GPU or TPU)

Decreasing learning rate
$\alpha(t)$ decreasing function \rightarrow find the right
schedule

Learning algorithms - Enhancements

General gradient descent
$\boldsymbol{W} \leftarrow \boldsymbol{W}-\alpha \nabla{ }_{\omega} L(\boldsymbol{W})$

Batches

- When \boldsymbol{W} dimensionality and the training set are very large \rightarrow minibatch
- Gradient contributions of each batch are independent \rightarrow parallel computing (GPU or TPU)

Decreasing learning rate
$\alpha(t)$ decreasing function \rightarrow find the right schedule

Gradient has high variance on small batches and thus may point to a wrong direction ..

Learning algorithms - Enhancements

General gradient descent
$\boldsymbol{W} \leftarrow \boldsymbol{W}-\alpha \nabla{ }_{\omega} L(\boldsymbol{W})$

Batches

- When \boldsymbol{W} dimensionality and the training set are very large \rightarrow minibatch
- Gradient contributions of each batch are independent \rightarrow parallel computing (GPU or TPU)

Decreasing learning rate
$\alpha(t)$ decreasing function \rightarrow find the right schedule

Gradient has high variance on small batches and thus may point to a wrong direction ..

- increase minibatch size as training proceeds

Learning algorithms - Enhancements

General gradient descent
$\boldsymbol{W} \leftarrow \boldsymbol{W}-\alpha \nabla{ }_{\omega} L(\boldsymbol{W})$

Batches

- When \boldsymbol{W} dimensionality and the training set are very large \rightarrow minibatch
- Gradient contributions of each batch are independent \rightarrow parallel computing (GPU or TPU)

Decreasing learning rate
$\alpha(t)$ decreasing function \rightarrow find the right schedule

Gradient has high variance on small batches and thus may point to a wrong direction ..

- increase minibatch size as training proceeds
- momemtum : keep a running average of the gradient

Learning algorithms - Enhancements

General gradient descent
$\boldsymbol{W} \leftarrow \boldsymbol{W}-\alpha \nabla{ }_{\omega} L(\boldsymbol{W})$

Batches

- When \boldsymbol{W} dimensionality and the training set are very large \rightarrow minibatch
- Gradient contributions of each batch are independent \rightarrow parallel computing (GPU or TPU)

Decreasing learning rate $\alpha(t)$ decreasing function \rightarrow find the right schedule

Gradient has high variance on small batches and thus may point to a wrong direction ..

- increase minibatch size as training proceeds
- momemtum : keep a running average of the gradient

Batch normalization

For each example i of the minibatch, replace each output z_{i} of each node by
$\hat{z}_{i}=\gamma \frac{z_{i}-\mu}{\sqrt{\varepsilon+\sigma^{2}}}+\beta$ (μ : mean, σ : standard deviation, within the minibatch) $(\varepsilon>0)(\gamma$ and β : new parameters)

Layers

input

hidden

output

Layers

Input encoding

- generally straighforward : $\{\top, \perp\} \rightarrow\{0,1\}, \mathbb{R} \rightarrow \mathbb{R}$, log scale for big magnitudes,

Layers

Input encoding

- generally straighforward : $\{\top, \perp\} \rightarrow\{0,1\}, \mathbb{R} \rightarrow \mathbb{R}$, log scale for big magnitudes,
- categories \rightarrow one-hot encoding

Layers

Input encoding

- generally straighforward : $\{\top, \perp\} \rightarrow\{0,1\}, \mathbb{R} \rightarrow \mathbb{R}$, log scale for big magnitudes,
- categories \rightarrow one-hot encoding
- images \rightarrow array-like structure to represent adjacency

Layers

Input encoding

- generally straighforward : $\{\top, \perp\} \rightarrow\{0,1\}, \mathbb{R} \rightarrow \mathbb{R}$, \log scale for big magnitudes,
- categories \rightarrow one-hot encoding
- images \rightarrow array-like structure to represent adjacency

Output encoding

- multiclass \rightarrow one-hot encoding : probability to be in the class k
softmax layer : softmax $(\overrightarrow{i n})_{k}=\frac{e^{i n_{k}}}{\sum_{k^{\prime}} e^{i_{k} k^{\prime}}}$

Layers

Input encoding

- generally straighforward : $\{\top, \perp\} \rightarrow\{0,1\}, \mathbb{R} \rightarrow \mathbb{R}$, \log scale for big magnitudes,
- categories \rightarrow one-hot encoding
- images \rightarrow array-like structure to represent adjacency

Output encoding

- multiclass \rightarrow one-hot encoding : probability to be in the class k
softmax layer : softmax $(\overrightarrow{i n})_{k}=\frac{e^{i i_{k}}}{\sum_{k^{\prime}} e^{m_{k^{\prime}}}}$
- regression \rightarrow linear layer

Layers

Hidden layer

- 1985-2010 : sigmoid or tanh
- now : ReLU and softplus more popular (vanishing gradient)

Input encoding

- generally straighforward : $\{\top, \perp\} \rightarrow\{0,1\}, \mathbb{R} \rightarrow \mathbb{R}$, \log scale for big magnitudes,
- categories \rightarrow one-hot encoding
- images \rightarrow array-like structure to represent adjacency

Output encoding

- multiclass \rightarrow one-hot encoding : probability to be in the class k
softmax layer : softmax $(\overrightarrow{i n})_{k}=\frac{e^{i i_{k}}}{\sum_{k^{\prime}} e^{m_{k^{\prime}}}}$
- regression \rightarrow linear layer

Cross-entropy

Multiclass Classification

Interpret \hat{y} as probabilities

Cross-entropy

Multiclass Classification
 Interpret \hat{y} as probabilities

Cross-entropy

Measure of dissimilarity between two distributions P and Q :
$H(P, Q)=-E_{z \sim P(z)}(\log Q(z))=$ $-\int P(z) \log Q(z) d z$

Cross-entropy

Multiclass Classification

Interpret \hat{y} as probabilities

Cross-entropy

Measure of dissimilarity between two
distributions P and Q :
$H(P, Q)=-E_{z \sim P(z)}(\log Q(z))=$
$-\int P(z) \log Q(z) d z$
For classification

- P : the true distribution over training examples
- Q : the predictive hypothesis

Cross-entropy

Multiclass Classification

Interpret \hat{y} as probabilities

Cross-entropy

Measure of dissimilarity between two distributions P and Q :
$H(P, Q)=-E_{z \sim P(z)}(\log Q(z))=$
$-\int P(z) \log Q(z) d z$
For classification

- P : the true distribution over training examples
- Q : the predictive hypothesis

Binary classification

- probability of output $y=1: q_{y=1}=\hat{y}$
- probability of output $y=0$: $q_{y=0}=1-\hat{y}$
$H(p, q)=-\sum_{i} p_{i} \log q_{i}=$
$-y \log \hat{y}-(1-y) \log (1-\hat{y})$

Cross-entropy

Multiclass Classification

Interpret \hat{y} as probabilities

Cross-entropy

Measure of dissimilarity between two distributions P and Q :
$H(P, Q)=-E_{z \sim P(z)}(\log Q(z))=$
$-\int P(z) \log Q(z) d z$

For classification

- P : the true distribution over training examples
- Q : the predictive hypothesis

Binary classification

- probability of output $y=1: q_{y=1}=\hat{y}$
- probability of output $y=0$: $q_{y=0}=1-\hat{y}$
$H(p, q)=-\sum_{i} p_{i} \log q_{i}=$
$-y \log \hat{y}-(1-y) \log (1-\hat{y})$
Cross-entropy loss

$$
\begin{aligned}
& L(\boldsymbol{w})=\frac{1}{N} \sum_{k=1}^{N} H\left(p_{k}, q_{k}\right) \\
& L(\boldsymbol{w})=-\frac{1}{N} \sum_{k=1}^{N}\left(y_{k} \log \hat{y}_{k}+\left(1-y_{k}\right) \log \left(1-\hat{y_{k}}\right)\right)
\end{aligned}
$$

Convolutional Networks

Image specificities

Convolutional Networks

Image specificities

- adjacency \rightarrow units should receive input from a small local region

Convolutional Networks

Image specificities

- adjacency \rightarrow units should receive input from a small local region
- space invariance \rightarrow units should share their weights

Convolutional Networks

Image specificities

- adjacency \rightarrow units should receive input from a small local region
- space invariance \rightarrow units should share their weights

Convolution

- kernel : pattern of weights that is replicated

1D example
$x_{0} y_{y}$
$x_{1} \xrightarrow[w_{3}]{w_{2}} \bigcirc \longrightarrow z_{1}$
x_{2} e
$x_{3} \xrightarrow[v_{3}]{w_{2}} \longrightarrow \longrightarrow z_{3} \xrightarrow[\begin{array}{c}\text { size: } l=3 \\ \text { stride: } s=2\end{array}]{\substack{ \\w_{2}}}$
x_{4}
$x_{5} \xrightarrow[w_{3}]{w_{2}} \bigcirc \longrightarrow z_{5}$

Convolutional Networks

Image specificities

- adjacency \rightarrow units should receive input from a small local region
- space invariance \rightarrow units should share their weights

Convolution

- kernel : pattern of weights that is replicated
- convolution : apply a kernel \boldsymbol{k} of size $/$:

$$
\boldsymbol{z}=\boldsymbol{x} * \boldsymbol{k} \rightarrow z_{i}=\sum_{j=1}^{1} k_{j} x_{j+i-(1+1) / 2}
$$

2D pattern

Convolutional Networks

Image specificities

- adjacency \rightarrow units should receive input from a small local region
- space invariance \rightarrow units should share their weights

Convolution

- kernel : pattern of weights that is replicated
- convolution : apply a kernel \boldsymbol{k} of size $/$:

$$
\boldsymbol{z = x} * \boldsymbol{k} \rightarrow z_{i}=\sum_{j=1}^{1} k_{j} x_{j+i-(1+1) / 2}
$$

Pooling

- average pooling : $\boldsymbol{k}=\left(\frac{1}{T}, \ldots, \frac{1}{T}\right)$ (if $s>1$: downsampling)

Convolutional Networks

Image specificities

- adjacency \rightarrow units should receive input from a small local region
- space invariance \rightarrow units should share their weights

Convolution

- kernel : pattern of weights that is replicated
- convolution : apply a kernel \boldsymbol{k} of size $/$:

$$
\boldsymbol{z = x} * \boldsymbol{k} \rightarrow z_{i}=\sum_{j=1}^{1} k_{j} x_{j+i-(1+1) / 2}
$$

Pooling

- average pooling : $\boldsymbol{k}=\left(\frac{1}{T}, \ldots, \frac{1}{T}\right)$ (if $s>1$: downsampling)
- max-pooling :

$$
z_{i}=\max _{1 \leq j \leq 1}\left(x_{j+i-(I+1) / 2}\right)
$$

Tensor

Multidimensional arrays of any dimension :

- 1D : vector
- 2D : matrix

Tensor

Multidimensional arrays of any dimension :

- 1D : vector
- 2D : matrix

Example

input
minibatch of 64 images RGB 256×256
$256 \times 256 \times 3 \times 64$

Tensor

Multidimensional arrays of any dimension :

- 1D : vector
- 2D : matrix

Example

input $\quad \longrightarrow \quad$ output minibatch of 64 images RGB 256×25696 kernels $5 \times 5 \times 3$ with $s=2 \quad$ feature map $256 \times 256 \times 3 \times 64$

Tensor

Multidimensional arrays of any dimension :

- 1D : vector
- 2D : matrix

Example

input $\quad \longrightarrow \quad$ output minibatch of 64 images RGB 256×25696 kernels $5 \times 5 \times 3$ with $s=2 \quad$ feature map $256 \times 256 \times 3 \times 64$ $128 \times 128 \times 96 \times 64$

Residual Networks

Idea

To avoid vanishing gradient in very deep networks \rightarrow keep information of the previous layer

Residual Networks

Idea

To avoid vanishing gradient in very deep networks \rightarrow keep information of the previous layer

Residual

Instead of $\boldsymbol{z}^{(i)}=h\left(\boldsymbol{z}^{(i-1)}\right)=g^{(i)}\left(\boldsymbol{W}^{(i)} \boldsymbol{z}^{(i-1)}\right) \rightarrow \boldsymbol{z}^{(i)}=g_{r}^{(i)}\left(\boldsymbol{z}^{(i-1)}+f\left(\boldsymbol{z}^{(i-1)}\right)\right)$

Residual Networks

Idea

To avoid vanishing gradient in very deep networks \rightarrow keep information of the previous layer

Residual

Instead of $\boldsymbol{z}^{(i)}=h\left(\boldsymbol{z}^{(i-1)}\right)=g^{(i)}\left(\boldsymbol{W}^{(i)} \boldsymbol{z}^{(i-1)}\right) \rightarrow \boldsymbol{z}^{(i)}=g_{r}^{(i)}\left(\boldsymbol{z}^{(i-1)}+f\left(\boldsymbol{z}^{(i-1)}\right)\right)$

- $g_{r}^{(i)}$: activation function

Residual Networks

Idea

To avoid vanishing gradient in very deep networks \rightarrow keep information of the previous layer

Residual

Instead of $\boldsymbol{z}^{(i)}=h\left(\boldsymbol{z}^{(i-1)}\right)=g^{(i)}\left(\boldsymbol{W}^{(i)} \boldsymbol{z}^{(i-1)}\right) \rightarrow \boldsymbol{z}^{(i)}=g_{r}^{(i)}\left(\boldsymbol{z}^{(i-1)}+f\left(\boldsymbol{z}^{(i-1)}\right)\right)$

- $g_{r}^{(i)}$: activation function
- f typically a linear + non-linear function : $f(\boldsymbol{z})=\boldsymbol{V} g(\boldsymbol{W} \boldsymbol{z})$

Residual Networks

Idea

To avoid vanishing gradient in very deep networks \rightarrow keep information of the previous layer

Residual

Instead of $\boldsymbol{z}^{(i)}=h\left(\boldsymbol{z}^{(i-1)}\right)=g^{(i)}\left(\boldsymbol{W}^{(i)} \boldsymbol{z}^{(i-1)}\right) \rightarrow \boldsymbol{z}^{(i)}=g_{r}^{(i)}\left(\boldsymbol{z}^{(i-1)}+f\left(\boldsymbol{z}^{(i-1)}\right)\right)$

- $g_{r}^{(i)}$: activation function
- f typically a linear + non-linear function : $f(\boldsymbol{z})=\boldsymbol{V} g(\boldsymbol{W} \boldsymbol{z})$

Disable a layer

We can make layers that can be disabled by setting $\boldsymbol{V}=\mathbf{0}$: if $g_{r}=\operatorname{ReL} U$ (at least for layers
$i-1$ and $i), \boldsymbol{z}^{(i-1)}=\operatorname{ReL} U\left(\right.$ in $\left.^{(i-1)}\right)$ then
$\boldsymbol{z}^{(i)}=\operatorname{ReLU}\left(\boldsymbol{z}^{(i-1)}\right)=\operatorname{ReLU}\left(\operatorname{ReL} U\left(\boldsymbol{i n}^{(i-1)}\right)\right)=\operatorname{ReLU}\left(\boldsymbol{i n}^{(i-1)}\right)=\boldsymbol{z}^{(i-1)}$

Recurrent Networks - Basic

Time series
A sequence of inputs $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{T}$ and observed outputs $\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{T}$.

Recurrent Networks - Basic

Time series
A sequence of inputs $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{T}$ and observed outputs $\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{\boldsymbol{T}}$.

Signal or Text processing

- time series \rightarrow we need a memory z
- time invariance \rightarrow share weights at each time step

Recurrent Networks - Basic

Time series
A sequence of inputs $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{T}$ and observed outputs $\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{T}$.

Signal or Text processing

- time series \rightarrow we need a memory z
- time invariance \rightarrow share weights at each time step

Basic RNN

Recurrent Networks - Basic

Time series
A sequence of inputs $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{T}$ and observed outputs $\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{T}$.

Signal or Text processing

- time series \rightarrow we need a memory z
- time invariance \rightarrow share weights at each time step

Basic RNN

Recurrent Networks - Basic

Time series
A sequence of inputs $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{T}$ and observed outputs $\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{T}$.

Signal or Text processing

- time series \rightarrow we need a memory z
- time invariance \rightarrow share weights at each time step

Basic RNN

$$
\begin{aligned}
& \text { Forward } \\
& z_{t}=g_{z}\left(w_{z, z} z_{t-1}+w_{x, z} x_{t}\right) \\
& \text { and } \hat{y}_{t}=g_{y}\left(w_{y, z} z_{t}\right)
\end{aligned}
$$

Recurrent Networks - Basic

Time series

A sequence of inputs $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{T}$ and observed outputs $\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{T}$.

Signal or Text processing

- time series \rightarrow we need a memory z
- time invariance \rightarrow share weights at each time step

Basic RNN

Forward

$z_{t}=g_{z}\left(w_{z, z} z_{t-1}+w_{x, z} x_{t}\right)$ and $\hat{y}_{t}=g_{y}\left(w_{y, z} z_{t}\right)$

Backpropagation

$$
\begin{aligned}
& \frac{\partial L}{\partial w_{z, z}}=\sum_{t=1}^{T}-2\left(y_{t}-\hat{y}_{t}\right) g_{y}^{\prime}\left(i n_{y, t}\right) w_{z, y} \frac{\partial z_{t}}{w_{z, z}} \\
& \frac{\partial z_{t}}{\partial w_{z, z}}=g_{z}^{\prime}\left(i n_{z, t}\right)\left(z_{t-1}+w_{z, z} \frac{\partial z_{t-1}}{w_{z, z}}\right)
\end{aligned}
$$

Recurrent Networks - Basic

Time series

A sequence of inputs $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{T}$ and observed outputs $\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{T}$.

Signal or Text processing

- time series \rightarrow we need a memory z
- time invariance \rightarrow share weights at each time step

Basic RNN

Forward
$z_{t}=g_{z}\left(w_{z, z} z_{t-1}+w_{x, z} x_{t}\right)$ and $\hat{y}_{t}=g_{y}\left(w_{y, z} z_{t}\right)$

Backpropagation

$$
\begin{aligned}
& \frac{\partial L}{\partial w_{z, z}}=\sum_{t=1}^{T}-2\left(y_{t}-\hat{y}_{t}\right) g_{y}^{\prime}\left(i n_{y, t}\right) w_{z, y} \frac{\partial z_{t}}{w_{z, z}} \\
& \frac{\partial z_{t}}{\partial w_{z, z}}=g_{z}^{\prime}\left(i n_{z, t}\right)\left(z_{t-1}+w_{z, z} \frac{\partial z_{t-1}}{w_{z, z}}\right)
\end{aligned}
$$

Issue

Gradient at step T will include terms proportional to $w_{z, z} \prod_{t=1}^{T} g_{z}^{\prime}\left(i n_{z, t}\right)$
\hookrightarrow vanishing ($w_{z, z}<1$) or exploding ($w_{z, z}>1$) gradient

Recurrent Networks - LSTM

Long Short-Term Memory (LSTM)

- memory cell c: copied at each time step

Recurrent Networks - LSTM

Long Short-Term Memory (LSTM)

- memory cell c: copied at each time step

Gating units :

Recurrent Networks - LSTM

Long Short-Term Memory (LSTM)

- memory cell c: copied at each time step

Gating units :

- forget gate \boldsymbol{f} : elements of the memory to forget/remember

Recurrent Networks - LSTM

Long Short-Term Memory (LSTM)

- memory cell c: copied at each time step

Gating units :

- forget gate \boldsymbol{f} : elements of the memory to forget/remember
- input gate \boldsymbol{i} : elements of the memory to update with new info from the inputs

Recurrent Networks - LSTM

Long Short-Term Memory (LSTM)

- memory cell c: copied at each time step

Gating units :

- forget gate \boldsymbol{f} : elements of the memory to forget/remember
- input gate \boldsymbol{i} : elements of the memory to update with new info from the inputs
- output gate \boldsymbol{o} : elements of the memory to transfer to the short-term memory

Recurrent Networks - LSTM

Long Short-Term Memory (LSTM)

- memory cell c: copied at each time step

Gating units :

- forget gate \boldsymbol{f} : elements of the memory to forget/remember
- input gate \boldsymbol{i} : elements of the memory to update with new info from the inputs
- output gate \boldsymbol{o} : elements of the memory to transfer to the short-term memory
- short-term memory z : as for basic RNN

Recurrent Networks - LSTM

Long Short-Term Memory (LSTM)

- memory cell c: copied at each time step

Gating units :

- forget gate \boldsymbol{f} : elements of the memory to forget/remember
- input gate \boldsymbol{i} : elements of the memory to update with new info from the inputs
- output gate \boldsymbol{o} : elements of the memory to transfer to the short-term memory
- short-term memory z : as for basic RNN

Gating units

- $\boldsymbol{f}_{t}=\sigma\left(\boldsymbol{W}_{x, f} \boldsymbol{x}_{t}+\boldsymbol{W}_{z, f} \boldsymbol{z}_{t-1}\right)$

Recurrent Networks - LSTM

Long Short-Term Memory (LSTM)

- memory cell c: copied at each time step

Gating units :

- forget gate \boldsymbol{f} : elements of the memory to forget/remember
- input gate \boldsymbol{i} : elements of the memory to update with new info from the inputs
- output gate \boldsymbol{o} : elements of the memory to transfer to the short-term memory
- short-term memory z : as for basic RNN

Gating units

- $\boldsymbol{f}_{t}=\sigma\left(\boldsymbol{W}_{x, f} \boldsymbol{x}_{t}+\boldsymbol{W}_{z, f} \boldsymbol{z}_{t-1}\right)$
- $\boldsymbol{i}_{t}=\sigma\left(\boldsymbol{W}_{x, i} \boldsymbol{x}_{t}+\boldsymbol{W}_{z, i} \boldsymbol{z}_{t-1}\right)$

Recurrent Networks - LSTM

Long Short-Term Memory (LSTM)

- memory cell c: copied at each time step

Gating units :

- forget gate \boldsymbol{f} : elements of the memory to forget/remember
- input gate \boldsymbol{i} : elements of the memory to update with new info from the inputs
- output gate \boldsymbol{o} : elements of the memory to transfer to the short-term memory
- short-term memory z : as for basic RNN

Gating units

- $\boldsymbol{f}_{t}=\sigma\left(\boldsymbol{W}_{x, f} \boldsymbol{x}_{t}+\boldsymbol{W}_{\boldsymbol{z}, f} \boldsymbol{z}_{t-1}\right)$
- $\boldsymbol{i}_{t}=\sigma\left(\boldsymbol{W}_{x, i} \boldsymbol{x}_{t}+\boldsymbol{W}_{z, i} \boldsymbol{z}_{t-1}\right)$
- $\boldsymbol{o}_{t}=\sigma\left(\boldsymbol{W}_{x, o} \boldsymbol{x}_{t}+\boldsymbol{W}_{z, o} \boldsymbol{z}_{t-1}\right)$

Recurrent Networks - LSTM

Long Short-Term Memory (LSTM)

- memory cell c: copied at each time step

Gating units :

- forget gate \boldsymbol{f} : elements of the memory to forget/remember
- input gate \boldsymbol{i} : elements of the memory to update with new info from the inputs
- output gate \boldsymbol{o} : elements of the memory to transfer to the short-term memory
- short-term memory z : as for basic RNN

Gating units

- $\boldsymbol{f}_{t}=\sigma\left(\boldsymbol{W}_{x, f} \boldsymbol{x}_{t}+\boldsymbol{W}_{\boldsymbol{z}, f} \boldsymbol{z}_{t-1}\right)$
- $\boldsymbol{i}_{t}=\sigma\left(\boldsymbol{W}_{x, i} \boldsymbol{x}_{t}+\boldsymbol{W}_{z, i} \boldsymbol{z}_{t-1}\right)$
- $\boldsymbol{o}_{t}=\sigma\left(\boldsymbol{W}_{x, o} \boldsymbol{x}_{t}+\boldsymbol{W}_{z, o} \boldsymbol{z}_{t-1}\right)$
- $\boldsymbol{c}_{t}=\boldsymbol{c}_{t-1} \odot \boldsymbol{f}_{t}+\boldsymbol{i}_{t} \odot \tanh \left(\boldsymbol{W}_{x, c} \boldsymbol{x}_{t}+\boldsymbol{W}_{z, c} \boldsymbol{z}_{t-1}\right)$

Recurrent Networks - LSTM

Long Short-Term Memory (LSTM)

- memory cell c: copied at each time step

Gating units :

- forget gate \boldsymbol{f} : elements of the memory to forget/remember
- input gate \boldsymbol{i} : elements of the memory to update with new info from the inputs
- output gate \boldsymbol{o} : elements of the memory to transfer to the short-term memory
- short-term memory z : as for basic RNN

Gating units

- $\boldsymbol{f}_{t}=\sigma\left(\boldsymbol{W}_{x, f} \boldsymbol{x}_{t}+\boldsymbol{W}_{\boldsymbol{z}, f} \boldsymbol{z}_{t-1}\right)$
- $\boldsymbol{i}_{t}=\sigma\left(\boldsymbol{W}_{x, i} \boldsymbol{x}_{t}+\boldsymbol{W}_{z, i} \boldsymbol{z}_{t-1}\right)$
- $\boldsymbol{o}_{t}=\sigma\left(\boldsymbol{W}_{x, o} \boldsymbol{x}_{t}+\boldsymbol{W}_{z, o} \boldsymbol{z}_{t-1}\right)$
- $\boldsymbol{c}_{t}=\boldsymbol{c}_{t-1} \odot \boldsymbol{f}_{t}+\boldsymbol{i}_{t} \odot \tanh \left(\boldsymbol{W}_{x, c} \boldsymbol{x}_{t}+\boldsymbol{W}_{z, c} \boldsymbol{z}_{t-1}\right)$
- $z_{t}=\tanh \left(\boldsymbol{c}_{t}\right) \odot \boldsymbol{o}_{t}$

Improve generalization - Design the architecture

Specialized architecture

- Convolutional : images
- Recurrent : text and audio signals

Improve generalization - Design the architecture

Specialized architecture

- Convolutional : images
- Recurrent : text and audio signals

Improve generalization - Design the architecture

Specialized architecture

- Convolutional : images
- Recurrent : text and audio signals

Neural architecture search

Empirical result

For a fixed number of weights : the deeper the better

Optimisation problem with
hyperparameters : depth, width, connectivity,

Improve generalization - Design the architecture

Specialized architecture

- Convolutional : images
- Recurrent : text and audio signals

Neural architecture search

Empirical result

For a fixed number of weights : the deeper the better

Optimisation problem with
hyperparameters : depth, width, connectivity

- Grid search

Improve generalization - Design the architecture

Specialized architecture

- Convolutional : images
- Recurrent : text and audio signals

Neural architecture search
Optimisation problem with
hyperparameters : depth, width, connectivity,

- Grid search
- Evolutionary algorithm : recombination (joining parts of two networks) + mutation (adding/removing a layer or changing a parameter value)

Empirical result

For a fixed number of weights : the deeper the better

Improve generalization - Design the architecture

Specialized architecture

- Convolutional : images
- Recurrent : text and audio signals

Neural architecture search
Optimisation problem with
hyperparameters : depth, width, connectivity,

- Grid search
- Evolutionary algorithm : recombination (joining parts of two networks) + mutation
(adding/removing a layer or changing a parameter value)
- Hill climbing with mutations

Empirical result

For a fixed number of weights : the deeper the better

Improve generalization - Design the architecture

Specialized architecture

- Convolutional : images
- Recurrent : text and audio signals

Neural architecture search
Optimisation problem with
hyperparameters : depth, width, connectivity,

- Grid search
- Evolutionary algorithm : recombination (joining parts of two networks) + mutation
(adding/removing a layer or changing a parameter value)
- Hill climbing with mutations
- Reinforcement learning

Empirical result

For a fixed number of weights : the deeper the better

Improve generalization - Design the architecture

Specialized architecture

- Convolutional : images
- Recurrent : text and audio signals

Neural architecture search
Optimisation problem with
hyperparameters : depth, width, connectivity,

- Grid search
- Evolutionary algorithm : recombination (joining parts of two networks) + mutation
(adding/removing a layer or changing a parameter value)
- Hill climbing with mutations
- Reinforcement learning
- Bayesian optimization

Empirical result

For a fixed number of weights : the deeper the better

Improve generalization - Design the architecture

Specialized architecture

- Convolutional : images
- Recurrent : text and audio signals

Neural architecture search
Optimisation problem with
hyperparameters : depth, width, connectivity,

- Grid search
- Evolutionary algorithm : recombination (joining parts of two networks) + mutation
(adding/removing a layer or changing a parameter value)
- Hill climbing with mutations
- Reinforcement learning
- Bayesian optimization
- Gradient descent

Empirical result

For a fixed number of weights : the deeper the better

Improve generalization - Design the architecture

Specialized architecture

- Convolutional : images
- Recurrent : text and audio signals

Neural architecture search
Optimisation problem with
hyperparameters : depth, width, connectivity,

- Grid search
- Evolutionary algorithm : recombination (joining parts of two networks) + mutation
(adding/removing a layer or changing a parameter value)
- Hill climbing with mutations
- Reinforcement learning
- Bayesian optimization
- Gradient descent

Empirical result

For a fixed number of weights : the deeper the better

Train and evaluate

Reduce time of estimation : train on test set + evaluate on validation set

Improve generalization - Design the architecture

Specialized architecture

- Convolutional : images
- Recurrent : text and audio signals

Neural architecture search
Optimisation problem with
hyperparameters : depth, width, connectivity,

- Grid search
- Evolutionary algorithm : recombination (joining parts of two networks) + mutation
(adding/removing a layer or changing a parameter value)
- Hill climbing with mutations
- Reinforcement learning
- Bayesian optimization
- Gradient descent

Empirical result

For a fixed number of weights: the deeper the better

Train and evaluate

Reduce time of estimation : train on test set + evaluate on validation set

- Smaller training set

Improve generalization - Design the architecture

Specialized architecture

- Convolutional : images
- Recurrent : text and audio signals

Neural architecture search
Optimisation problem with
hyperparameters : depth, width, connectivity,

- Grid search
- Evolutionary algorithm : recombination (joining parts of two networks) + mutation
(adding/removing a layer or changing a parameter value)
- Hill climbing with mutations
- Reinforcement learning
- Bayesian optimization
- Gradient descent

Empirical result

For a fixed number of weights : the deeper the better

Train and evaluate

Reduce time of estimation : train on test set + evaluate on validation set

- Smaller training set
- Fewer batches + prediction of improvement

Improve generalization - Design the architecture

Specialized architecture

- Convolutional : images
- Recurrent : text and audio signals

Neural architecture search
Optimisation problem with
hyperparameters : depth, width, connectivity,

- Grid search
- Evolutionary algorithm : recombination (joining parts of two networks) + mutation
(adding/removing a layer or changing a parameter value)
- Hill climbing with mutations
- Reinforcement learning
- Bayesian optimization
- Gradient descent

Empirical result

For a fixed number of weights : the deeper the better

Train and evaluate

Reduce time of estimation : train on test set + evaluate on validation set

- Smaller training set
- Fewer batches + prediction of improvement
- Reduced version of the network

Improve generalization - Design the architecture

Specialized architecture

- Convolutional : images
- Recurrent : text and audio signals

Neural architecture search
Optimisation problem with
hyperparameters : depth, width, connectivity,

- Grid search
- Evolutionary algorithm : recombination (joining parts of two networks) + mutation
(adding/removing a layer or changing a parameter value)
- Hill climbing with mutations
- Reinforcement learning
- Bayesian optimization
- Gradient descent

Empirical result

For a fixed number of weights : the deeper the better

Train and evaluate

Reduce time of estimation : train on test set + evaluate on validation set

- Smaller training set
- Fewer batches + prediction of improvement
- Reduced version of the network
- Focus on subgraph

Improve generalization - Design the architecture

Specialized architecture

- Convolutional : images
- Recurrent : text and audio signals

Neural architecture search

Optimisation problem with
hyperparameters : depth, width, connectivity,

- Grid search
- Evolutionary algorithm : recombination (joining parts of two networks) + mutation
(adding/removing a layer or changing a parameter value)
- Hill climbing with mutations
- Reinforcement learning
- Bayesian optimization
- Gradient descent

Empirical result

For a fixed number of weights : the deeper the better

Train and evaluate

Reduce time of estimation : train on test set + evaluate on validation set

- Smaller training set
- Fewer batches + prediction of improvement
- Reduced version of the network
- Focus on subgraph
- Learn heuristic evaluation function

Improve generalization

Weight decay
Regularization with penalty $\lambda \sum_{i, j} \boldsymbol{W}_{i, j}^{2}$, typically $\lambda=10^{-4}$
\hookrightarrow Encourage small weights
(to stay in the linear part for sigmoid activation)

Improve generalization

Weight decay

Regularization with penalty $\lambda \sum_{i, j} \boldsymbol{W}_{i, j}^{2}$, typically $\lambda=10^{-4}$
\hookrightarrow Encourage small weights
(to stay in the linear part for sigmoid activation)
Dropout
At each step of training deactivate a random set of units

- Encourage the detection of more features
- Make it more robust to noise

Neural Network Applications

Vision

Deep convolutional networks (since 1990s)
ImageNet competition : classification 1200000 images in 1000 categories
In 2012, AlexNet : error rate $<15.3 \%$ ($2^{\text {nd }}: 25 \%$) (now, error rate $<2 \%$)

Neural Network Applications

Vision

Deep convolutional networks (since 1990s)
ImageNet competition : classification 1200000 images in 1000 categories
In 2012, AlexNet : error rate $<15.3 \%$ (2 $2^{\text {nd }}: 25 \%$) (now, error rate $<2 \%$)
Natural Langage processing
Translation problems :

- Two networks : from L1 to IR + from IR to L2
- One end-to-end network \leftarrow performs better

Speech recognition : representation of words with high-dimensional vectors \rightarrow word embeddings

Neural Network Applications

Vision

Deep convolutional networks (since 1990s)
ImageNet competition : classification 1200000 images in 1000 categories
In 2012, AlexNet : error rate $<15.3 \%$ (2 $2^{\text {nd }}: 25 \%$) (now, error rate $<2 \%$)
Natural Langage processing
Translation problems :

- Two networks : from L1 to IR + from IR to L2
- One end-to-end network \leftarrow performs better

Speech recognition : representation of words with high-dimensional vectors \rightarrow word embeddings
Reinforcement learning
Optimise the sum of future rewards: learn a value function, Q-function, policy, $\ldots \rightarrow$ deep reinforcement learning

DeepMind: DQN an Atari-playing agent (2013) and AlphaGo (2014)

AlexNet architecture

Architecture of Alexnet. From left to right (input to output) five convolutional layers with Max Pooling after layers 1,2 , and 5 , followed by a three layer fully connected classifier (layers 6-8). The number of neurons in the output layer is equal to the designed number of output classes.

- Neural Networks $=$ computation graph composed of parameterized linear-threshold units

Deep Learning - Summary

- Neural Networks = computation graph composed of parameterized linear-threshold units
- A neural network can represent complex nonlinear functions

Deep Learning - Summary

- Neural Networks = computation graph composed of parameterized linear-threshold units
- A neural network can represent complex nonlinear functions
- Backpropagation $=$ gradient descent for neural networks

Deep Learning - Summary

- Neural Networks = computation graph composed of parameterized linear-threshold units
- A neural network can represent complex nonlinear functions
- Backpropagation $=$ gradient descent for neural networks
- Deep learning is suited for visual object recognition, speech recognition, natural language processing and reinforcement learning

Deep Learning - Summary

- Neural Networks = computation graph composed of parameterized linear-threshold units
- A neural network can represent complex nonlinear functions
- Backpropagation $=$ gradient descent for neural networks
- Deep learning is suited for visual object recognition, speech recognition, natural language processing and reinforcement learning
- Convolutional networks \rightarrow data with grid topology (e.g. images)

Deep Learning - Summary

- Neural Networks = computation graph composed of parameterized linear-threshold units
- A neural network can represent complex nonlinear functions
- Backpropagation = gradient descent for neural networks
- Deep learning is suited for visual object recognition, speech recognition, natural language processing and reinforcement learning
- Convolutional networks \rightarrow data with grid topology (e.g. images)
- Recurrent networks \rightarrow sequence data (e.g. language modeling and machine translation)

Deep Learning - Summary

- Neural Networks = computation graph composed of parameterized linear-threshold units
- A neural network can represent complex nonlinear functions
- Backpropagation = gradient descent for neural networks
- Deep learning is suited for visual object recognition, speech recognition, natural language processing and reinforcement learning
- Convolutional networks \rightarrow data with grid topology (e.g. images)
- Recurrent networks \rightarrow sequence data (e.g. language modeling and machine translation)

To go further...

- Transfer learning : re-train a pretrained network for a specific task

Deep Learning - Summary

- Neural Networks = computation graph composed of parameterized linear-threshold units
- A neural network can represent complex nonlinear functions
- Backpropagation = gradient descent for neural networks
- Deep learning is suited for visual object recognition, speech recognition, natural language processing and reinforcement learning
- Convolutional networks \rightarrow data with grid topology (e.g. images)
- Recurrent networks \rightarrow sequence data (e.g. language modeling and machine translation)

To go further...

- Transfer learning : re-train a pretrained network for a specific task
- Generative Adversarial Networks : a generator network + a discriminator network

Model Selection and
Optimisation

Ensemble learning

Learn several hypothesis $h_{1}, h_{2}, \ldots, h_{K}$ and use a combination $h^{*}=\left\{h_{1}, h_{2}, \ldots, h_{K}\right\}$

- reduce bias of each base model by combining
- reduce variance of learning by voting

Ensemble learning

Learn several hypothesis $h_{1}, h_{2}, \ldots, h_{K}$ and use a combination $h^{*}=\left\{h_{1}, h_{2}, \ldots, h_{K}\right\}$

- reduce bias of each base model by combining
- reduce variance of learning by voting

Bagging

$h^{*}(\boldsymbol{x})=\frac{1}{K} \sum_{i=1}^{K} h_{i}(\boldsymbol{x}):$ voting in the same model class
Example : random forests

Ensemble learning

Learn several hypothesis $h_{1}, h_{2}, \ldots, h_{K}$ and use a combination $h^{*}=\left\{h_{1}, h_{2}, \ldots, h_{K}\right\}$

- reduce bias of each base model by combining
- reduce variance of learning by voting

Bagging

$h^{*}(\boldsymbol{x})=\frac{1}{K} \sum_{i=1}^{K} h_{i}(\boldsymbol{x}):$ voting in the same model class
Example : random forests

Stacking

Train a new hypothesis on validation set augmented with the predictions of $h_{1}, h_{2}, \ldots, h_{K}$

Ensemble learning

Learn several hypothesis $h_{1}, h_{2}, \ldots, h_{K}$ and use a combination $h^{*}=\left\{h_{1}, h_{2}, \ldots, h_{K}\right\}$

- reduce bias of each base model by combining
- reduce variance of learning by voting

Bagging

$h^{*}(\boldsymbol{x})=\frac{1}{K} \sum_{i=1}^{K} h_{i}(\boldsymbol{x}):$ voting in the same model class
Example : random forests

Stacking

Train a new hypothesis on validation set augmented with the predictions of $h_{1}, h_{2}, \ldots, h_{K}$

- learn a weight for each hypothesis h_{i} : trust

Ensemble learning

Learn several hypothesis $h_{1}, h_{2}, \ldots, h_{K}$ and use a combination $h^{*}=\left\{h_{1}, h_{2}, \ldots, h_{K}\right\}$

- reduce bias of each base model by combining
- reduce variance of learning by voting

Bagging

$h^{*}(\boldsymbol{x})=\frac{1}{K} \sum_{i=1}^{K} h_{i}(\boldsymbol{x}):$ voting in the same model class
Example : random forests

Stacking

Train a new hypothesis on validation set augmented with the predictions of $h_{1}, h_{2}, \ldots, h_{K}$

- learn a weight for each hypothesis h_{i} : trust
- we can add metadata (e.g. time to compute) and stack several layers

Ensemble learning

Learn several hypothesis $h_{1}, h_{2}, \ldots, h_{K}$ and use a combination $h^{*}=\left\{h_{1}, h_{2}, \ldots, h_{K}\right\}$

- reduce bias of each base model by combining
- reduce variance of learning by voting

Bagging

$h^{*}(\boldsymbol{x})=\frac{1}{K} \sum_{i=1}^{K} h_{i}(\boldsymbol{x}):$ voting in the same model class
Example : random forests

Stacking

Train a new hypothesis on validation set augmented with the predictions of $h_{1}, h_{2}, \ldots, h_{K}$

- learn a weight for each hypothesis h_{i} : trust
- we can add metadata (e.g. time to compute) and stack several layers

Ensemble learning

Learn several hypothesis $h_{1}, h_{2}, \ldots, h_{K}$ and use a combination $h^{*}=\left\{h_{1}, h_{2}, \ldots, h_{K}\right\}$

- reduce bias of each base model by combining
- reduce variance of learning by voting

Bagging

$h^{*}(\boldsymbol{x})=\frac{1}{K} \sum_{i=1}^{K} h_{i}(\boldsymbol{x}):$ voting in the same model class
Example : random forests

Stacking

Train a new hypothesis on validation set augmented with the predictions of $h_{1}, h_{2}, \ldots, h_{K}$

- learn a weight for each hypothesis h_{i} : trust
- we can add metadata (e.g. time to compute) and stack several layers

Boosting

1. Boost incorrectly classified training example by increasing its weight (number of occurences), iterate after learning each h_{i}
2. Weighted voting : $h^{*}(\boldsymbol{x})=\sum_{i=1}^{K} z_{i} h_{i}(\boldsymbol{x})$

Gradient boosting

Boosting with gradient descent to find the weight on training examples

Model Selection

- Random Forests : lot of categorical features and many irrelevant

Model Selection

- Random Forests : lot of categorical features and many irrelevant
- Non-parametric models : lot of data and no prior knowledge \rightarrow resulting hypothesis are expensive to compute

Model Selection

- Random Forests : lot of categorical features and many irrelevant
- Non-parametric models : lot of data and no prior knowledge \rightarrow resulting hypothesis are expensive to compute
- Logistic Regression performs similarly than SVM

Model Selection

- Random Forests : lot of categorical features and many irrelevant
- Non-parametric models : lot of data and no prior knowledge \rightarrow resulting hypothesis are expensive to compute
- Logistic Regression performs similarly than SVM
- SVM : is better for not too large dataset with high dimension

Model Selection

- Random Forests : lot of categorical features and many irrelevant
- Non-parametric models : lot of data and no prior knowledge \rightarrow resulting hypothesis are expensive to compute
- Logistic Regression performs similarly than SVM
- SVM : is better for not too large dataset with high dimension
- Deep Neural Network : for complex pattern recognition (e.g. image or speech processing)

Data enhancement

- Not enough data \rightarrow data augmentation (example : image cropping/rotating/...)

Data enhancement

- Not enough data \rightarrow data augmentation (example : image cropping/rotating/...)
- Unbalanced classes in data (example : unbalanced representation of negative vs. positive examples) \rightarrow undersample or oversample

Data enhancement

- Not enough data \rightarrow data augmentation (example : image cropping/rotating/...)
- Unbalanced classes in data (example : unbalanced representation of negative vs. positive examples) \rightarrow undersample or oversample
- Outliers : points far from the majority \rightarrow some model classes are less susceptible : decision trees

Summary

Summary

- Supervised learning is learning on labelled datasets
- Regression is learning a function with infinite output values
- Classification is learning a function with finite output values
- Linear/Logistic regression is a simple yet powerful model class for supervised learning
- Deep Neural Networks are computation graphs composed of units made of a non-linear and a linear function
- Deep learning is well suited for visual object recognition, speech recognition, natural language processing and reinforcement learning

Sources

- Artificial Intelligence : A Modern Approach, Stuart Russell and Peter Norvig
- Lecture of Didier Lime (2022-2023)
- Lecture of Kilian Weinberger: https://courses.cis.cornell.edu/cs4780/2017sp/

