## **Artificial Intelligence**

Supervised Learning

Rémi Parrot remi.parrot@ec-nantes.fr

11 mars 2024



# "An agent is **learning** if it **improves** its **performance** after making **observations** about the world.", *S. Russell and P. Norvig*, Artificial Intelligence – A Modern Approach

"An agent is **learning** if it **improves** its **performance** after making **observations** about the world.", *S. Russell and P. Norvig*, Artificial Intelligence – A Modern Approach

**Induction** specific observations  $\rightarrow$  general rules

 $\neq$ 

Deduction

general axioms  $\rightarrow$  specific propositions

(guaranteed to be correct)

"An agent is **learning** if it **improves** its **performance** after making **observations** about the world.", *S. Russell and P. Norvig*, Artificial Intelligence – A Modern Approach

**Induction** specific observations  $\rightarrow$  general rules

 $\neq$ 

 $\ensuremath{\text{Example}}$  the sun rose every morning in the past  $\rightarrow$  the sun will rise tomorrow

Deduction

general axioms  $\rightarrow$  specific propositions

(guaranteed to be correct)

 $\begin{array}{l} \textbf{Example} \\ \text{all squirrels are mortal and Scrat is a} \\ \text{squirrel} \rightarrow \text{Scrat is mortal} \end{array}$ 

#### Parameters

- *component* to be improved
- $\bullet \ \textit{prior knowledge} \rightarrow \textit{model}$
- data and feedback

#### Parameters

- *component* to be improved
- $\bullet \ \textit{prior knowledge} \rightarrow \textit{model}$
- data and feedback

#### Components

- A direct mapping from conditions on the current state to actions
- A means to infer relevant properties of the world from the percept sequence
- Information about the way the world evolves and about the results of possible actions
- Utility information indicating the desirability of world states
- ...

 $\begin{array}{l} \textbf{Data} \\ (x_1,y_1), (x_2,y_2), \dots \in X \times Y \end{array}$ 

- Classification : Y is finite (e.g. {sunny, cloudy, rainy} or {true, false})
- **Regression** : Y is *infinite* (e.g.  $\mathbb{N}$ )

# **Data** $(x_1, y_1), (x_2, y_2), \dots \in X \times Y$

- Classification : Y is finite (e.g. {sunny, cloudy, rainy} or {true, false})
- **Regression** : Y is *infinite* (e.g.  $\mathbb{N}$ )

#### Feedback

- Supervised learning : the agent observes input-output pairs (x, y) and learn y = f(x)
- Unsupervised learning : the agent learns *pattern* from *inputs*
- **Reinforcement learning** : the agent learns from a serie of reinforcements : *rewards* and *punishments*

Supervised Learning

Linear Regression and Classification

Deep Learning

Model Selection and Optimisation

Summary

## **Supervised Learning**

Data set  $(x_1, y_1), (x_2, y_2), \dots (x_N, y_N) \in X \times Y$ 

Data set  $(x_1, y_1), (x_2, y_2), \dots (x_N, y_N) \in X \times Y$ 

**Function to learn**  $y = f(x) \rightarrow \text{hypothesis } h \sim f$  Data set  $(x_1, y_1), (x_2, y_2), \dots (x_N, y_N) \in X \times Y$ 

**Function to learn**  $y = f(x) \rightarrow$  hypothesis  $h \sim f$ 

#### Stationarity assumption

- $P(E_j) = P(E_{j+1}) = P(E_{j+2}) = \dots$  : each example has the same prior probability distribution
- $P(E_j) = P(E_j | E_{j-1}, E_{j-2}, ...)$  : each example is independent from previous examples

 $\hookrightarrow$  independent and identically distributed

#### Model

• hypothesis space  ${\cal H}=$ 

model class

#### Model

- hypothesis space  $\mathcal{H} =$  model class
- hypothesis  $h \in \mathcal{H} =$  model

#### Model

- hypothesis space  $\mathcal{H} =$  model class
- hypothesis  $h \in \mathcal{H} =$  model
- hyperparameters : parameters of the model class (e.g : degree for polynomial)

**Train and Evaluate** *Learn* with part of the data and *evaluate* with the rest :

Model

- hypothesis space  $\mathcal{H} =$  model class
- hypothesis  $h \in \mathcal{H} =$  model
- hyperparameters :

parameters of the model class (e.g : degree for polynomial)

Learn with part of the data and evaluate with the rest :

#### Model

- hypothesis space  $\mathcal{H} =$  model class
- hypothesis  $h \in \mathcal{H} =$  model
- hyperparameters :

parameters of the model class (e.g : degree for polynomial) • **training set** : to train candidate models (≠ model classes and ≠ hyperparameters)

Learn with part of the data and evaluate with the rest :

#### Model

- hypothesis space  $\mathcal{H} =$  model class
- hypothesis  $h \in \mathcal{H} =$  model
- hyperparameters : parameters of the model class (e.g : degree for polynomial)

- **training set** : to train candidate models (≠ model classes and ≠ hyperparameters)
- validation set : to evaluate candidate models and select the best

Learn with part of the data and evaluate with the rest :

#### Model

- hypothesis space  $\mathcal{H} =$  model class
- hypothesis  $h \in \mathcal{H} =$  model
- hyperparameters : parameters of the model class (e.g : degree for polynomial)

- **training set** : to train candidate models (≠ model classes and ≠ hyperparameters)
- validation set : to evaluate candidate models and select the best
- test set : to evaluate the selected model

Learn with part of the data and evaluate with the rest :

#### Model

- hypothesis space  $\mathcal{H} =$  model class
- hypothesis  $h \in \mathcal{H} =$  model
- hyperparameters : parameters of the model class (e.g : degree for polynomial)

- training set : to train candidate models (≠ model classes and ≠ hyperparameters)
- validation set : to evaluate candidate models and select the best
- test set : to evaluate the selected model

#### k-fold cross-validation

- split the training set into k subsets
- iterate the three steps for all  $i \in [1, k]$  :
  - take subset *i* out
  - train with k-1 joint subsets
  - validate with the subset *i*

**Loss function** y = f(x) and  $\hat{y} = h(x)$ 

**Loss function** y = f(x) and  $\hat{y} = h(x)$ 

 $L(x, y, \hat{y}) = \text{Utility}(\text{using } y \text{ given } x) - \text{Utility}(\text{using } \hat{y} \text{ given } x)$ 

**Loss function** y = f(x) and  $\hat{y} = h(x)$ 

 $L(x, y, \hat{y}) = \text{Utility}(\text{using } y \text{ given } x) - \text{Utility}(\text{using } \hat{y} \text{ given } x) \rightarrow \text{simplification} : L(y, \hat{y})$ 

**Loss function** y = f(x) and  $\hat{y} = h(x)$ 

 $L(x, y, \hat{y}) = \text{Utility}(\text{using } y \text{ given } x) - \text{Utility}(\text{using } \hat{y} \text{ given } x) \rightarrow \text{simplification} : L(y, \hat{y})$ example : For a spam filter, L(spam, nospam) = 1 and L(nospam, spam) = 10

Loss function y = f(x) and  $\hat{y} = h(x)$   $L(x, y, \hat{y}) = \text{Utility}(\text{using } y \text{ given } x) - \text{Utility}(\text{using } \hat{y} \text{ given } x) \rightarrow \text{simplification} : L(y, \hat{y})$ example : For a spam filter, L(spam, nospam) = 1 and L(nospam, spam) = 10

#### **Usual loss functions**

• Absolute-value loss :  $L_1(y, \hat{y}) = |y - \hat{y}|$ 

Loss function y = f(x) and  $\hat{y} = h(x)$   $L(x, y, \hat{y}) = \text{Utility}(\text{using } y \text{ given } x) - \text{Utility}(\text{using } \hat{y} \text{ given } x) \rightarrow \text{simplification} : L(y, \hat{y})$ example : For a spam filter, L(spam, nospam) = 1 and L(nospam, spam) = 10

#### **Usual loss functions**

- Absolute-value loss :  $L_1(y, \hat{y}) = |y \hat{y}|$
- Squared-error loss :  $L_2(y, \hat{y}) = (y \hat{y})^2$

Loss function y = f(x) and  $\hat{y} = h(x)$   $L(x, y, \hat{y}) = \text{Utility}(\text{using } y \text{ given } x) - \text{Utility}(\text{using } \hat{y} \text{ given } x) \rightarrow \text{simplification} : L(y, \hat{y})$ example : For a spam filter, L(spam, nospam) = 1 and L(nospam, spam) = 10

#### **Usual loss functions**

• Absolute-value loss :  $L_1(y, \hat{y}) = |y - \hat{y}|$ 

• Squared-error loss : 
$$L_2(y, \hat{y}) = (y - \hat{y})^2$$

• 
$$0/1$$
 loss :  $L_{0/1}(y, \hat{y}) = \begin{cases} 0 & \text{if } y = \hat{y} \\ 1 & \text{else} \end{cases}$ 

Loss function y = f(x) and  $\hat{y} = h(x)$   $L(x, y, \hat{y}) = \text{Utility}(\text{using } y \text{ given } x) - \text{Utility}(\text{using } \hat{y} \text{ given } x) \rightarrow \text{simplification} : L(y, \hat{y})$ example : For a spam filter, L(spam, nospam) = 1 and L(nospam, spam) = 10

#### **Usual loss functions**

• Absolute-value loss :  $L_1(y, \hat{y}) = |y - \hat{y}|$ 

• Squared-error loss : 
$$L_2(y, \hat{y}) = (y - \hat{y})^2$$

• 
$$0/1$$
 loss :  $L_{0/1}(y, \hat{y}) = \begin{cases} 0 & \text{if } y = \hat{y} \\ 1 & \text{else} \end{cases}$ 

**Generalization loss**  
$$GenLoss_L(h) = \sum_{(x,y)} L(y, h(x))P(x, y)$$

Loss function y = f(x) and  $\hat{y} = h(x)$   $L(x, y, \hat{y}) = \text{Utility}(\text{using } y \text{ given } x) - \text{Utility}(\text{using } \hat{y} \text{ given } x) \rightarrow \text{simplification} : L(y, \hat{y})$ example : For a spam filter, L(spam, nospam) = 1 and L(nospam, spam) = 10

#### **Usual loss functions**

• Absolute-value loss : 
$$L_1(y, \hat{y}) = |y - \hat{y}|$$

• Squared-error loss : 
$$L_2(y, \hat{y}) = (y - \hat{y})^2$$

• 
$$0/1$$
 loss :  $L_{0/1}(y, \hat{y}) = \begin{cases} 0 & \text{if } y = \hat{y} \\ 1 & \text{else} \end{cases}$ 

#### **Empirical loss**

$$EmpLoss_{L,E}(h) = \sum_{(x,y)\in E} L(y, h(x)) \frac{1}{N}$$
(with  $|E| = N$ )

**Generalization loss**  

$$GenLoss_L(h) = \sum_{(x,y)} L(y, h(x))P(x, y)$$

Loss function y = f(x) and  $\hat{y} = h(x)$   $L(x, y, \hat{y}) = \text{Utility}(\text{using } y \text{ given } x) - \text{Utility}(\text{using } \hat{y} \text{ given } x) \rightarrow \text{simplification} : L(y, \hat{y})$ example : For a spam filter, L(spam, nospam) = 1 and L(nospam, spam) = 10

#### **Usual loss functions**

• Absolute-value loss :  $L_1(y, \hat{y}) = |y - \hat{y}|$ 

• Squared-error loss : 
$$L_2(y, \hat{y}) = (y - \hat{y})^2$$

• 
$$0/1$$
 loss :  $L_{0/1}(y, \hat{y}) = \begin{cases} 0 & \text{if } y = \hat{y} \\ 1 & \text{else} \end{cases}$ 

#### **Empirical loss**

$$EmpLoss_{L,E}(h) = \sum_{(x,y)\in E} L(y, h(x)) \frac{1}{N}$$
(with  $|E| = N$ )

Regularization Ockham's razor dictates to prefer simplicity

## **Generalization loss** $GenLoss_L(h) = \sum_{(x,y)} L(y, h(x))P(x, y)$

Loss function y = f(x) and  $\hat{y} = h(x)$   $L(x, y, \hat{y}) = \text{Utility}(\text{using } y \text{ given } x) - \text{Utility}(\text{using } \hat{y} \text{ given } x) \rightarrow \text{simplification} : L(y, \hat{y})$ example : For a spam filter, L(spam, nospam) = 1 and L(nospam, spam) = 10

#### **Usual loss functions**

• Absolute-value loss :  $L_1(y, \hat{y}) = |y - \hat{y}|$ 

• Squared-error loss : 
$$L_2(y, \hat{y}) = (y - \hat{y})^2$$

• 
$$0/1$$
 loss :  $L_{0/1}(y, \hat{y}) = \begin{cases} 0 & \text{if } y = \hat{y} \\ 1 & \text{else} \end{cases}$ 

Generalization loss  

$$GenLoss_L(h) = \sum_{(x,y)} L(y, h(x))P(x, y)$$

#### **Empirical loss**

$$EmpLoss_{L,E}(h) = \sum_{(x,y)\in E} L(y, h(x)) \frac{1}{N}$$
(with  $|E| = N$ )

Regularization Ockham's razor dictates to prefer simplicity

 $Cost(h) = EmpLoss(h) + \lambda Complexity(h)$ 

$$\hat{h}^* = \underset{h \in \mathcal{H}}{\operatorname{argminCost}(h)}$$
 7/42

#### Realizability/Intractability

• Realizable :  $f \in \mathcal{H}$ 

#### Realizability/Intractability

- **Realizable** :  $f \in \mathcal{H}$
- **Computationally tractable** : there exists algorithm to explore  $\mathcal{H}$  with reasonable amount of time/resources.

#### Realizability/Intractability

- **Realizable** :  $f \in \mathcal{H}$
- **Computationally tractable** : there exists algorithm to explore  $\mathcal{H}$  with reasonable amount of time/resources.

# **Dataset** f may be nondeterministic or **noisy** : different values of f(x) for a same x

#### Realizability/Intractability

- **Realizable** :  $f \in \mathcal{H}$
- **Computationally tractable** : there exists algorithm to explore  $\mathcal{H}$  with reasonable amount of time/resources.

# **Dataset** f may be nondeterministic or **noisy** : different values of f(x) for a same x

#### Underfitting/Overfitting

 Overfitting : when a function pays too much attention to the particular data it is trained on → doesn't generalize well.

# Learning failure

#### Realizability/Intractability

- **Realizable** :  $f \in \mathcal{H}$
- **Computationally tractable** : there exists algorithm to explore  $\mathcal{H}$  with reasonable amount of time/resources.

# **Dataset** f may be nondeterministic or **noisy** : different values of f(x) for a same x

#### **Underfitting/Overfitting**

- Overfitting : when a function pays too much attention to the particular data it is trained on → doesn't generalize well.
- **Underfitting** : when a function fails to find a pattern in the data.

# Learning failure

#### Realizability/Intractability

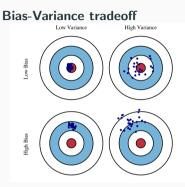
- **Realizable** :  $f \in \mathcal{H}$
- **Computationally tractable** : there exists algorithm to explore  $\mathcal{H}$  with reasonable amount of time/resources.

#### Dataset

f may be nondeterministic or **noisy** : different values of f(x) for a same x

#### **Underfitting/Overfitting**

- Overfitting : when a function pays too much attention to the particular data it is trained on → doesn't generalize well.
- **Underfitting** : when a function fails to find a pattern in the data.



# Learning failure

## Realizability/Intractability

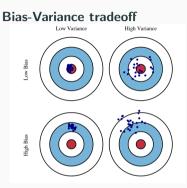
- **Realizable** :  $f \in \mathcal{H}$
- **Computationally tractable** : there exists algorithm to explore  $\mathcal{H}$  with reasonable amount of time/resources.

#### Dataset

f may be nondeterministic or **noisy** : different values of f(x) for a same x

#### **Underfitting/Overfitting**

- Overfitting : when a function pays too much attention to the particular data it is trained on → doesn't generalize well.
- **Underfitting** : when a function fails to find a pattern in the data.



- complex low-bias hypotheses that fit the training data well
- simple low-variance hypotheses that generalize better

8/42

• Decision trees

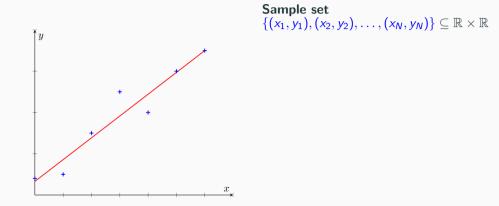
- Decision trees
- Linear regression

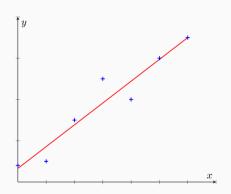
- Decision trees
- Linear regression
- Linear/Logistic classification

- Decision trees
- Linear regression
- Linear/Logistic classification
- Support Vector Machines

- Decision trees
- Linear regression
- Linear/Logistic classification
- Support Vector Machines
- Neural Networks

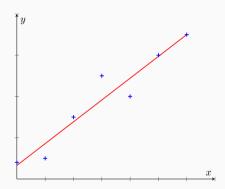
Linear Regression and Classification





Sample set  $\{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\} \subseteq \mathbb{R} \times \mathbb{R}$ 

Hypothesis  $h_{\vec{w}}(x) = w_0 + w_1 x$  with  $\vec{w} = (w_0, w_1)$ 

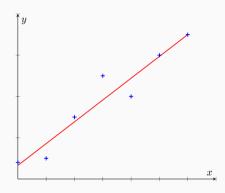


Sample set  $\{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\} \subseteq \mathbb{R} \times \mathbb{R}$ 

Hypothesis  $h_{\vec{w}}(x) = w_0 + w_1 x$  with  $\vec{w} = (w_0, w_1)$ 

**Minimize loss** Normally distributed noise  $\rightarrow L_2$  (Gauss)

$$Loss(h_{\vec{w}}) = \sum_{j=1}^{N} L_2(y_j, h_{\vec{w}}(x_j)) = \sum_{j=1}^{N} (y_j - (w_0 + w_1 x_j))^2$$
  
Minimize  $L(\vec{w}) = Loss(h_{\vec{w}})$ 



Sample set  $\{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\} \subseteq \mathbb{R} \times \mathbb{R}$ 

Hypothesis  $h_{\vec{w}}(x) = w_0 + w_1 x$  with  $\vec{w} = (w_0, w_1)$ 

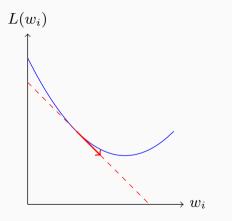
**Minimize loss** Normally distributed noise  $\rightarrow L_2$  (Gauss)

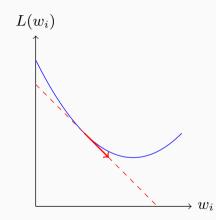
$$Loss(h_{\vec{w}}) = \sum_{j=1}^{N} L_2(y_j, h_{\vec{w}}(x_j)) = \sum_{j=1}^{N} (y_j - (w_0 + w_1 x_j))^2$$
  
Minimize  $L(\vec{w}) = Loss(h_{\vec{w}})$ 

#### Analytic solution

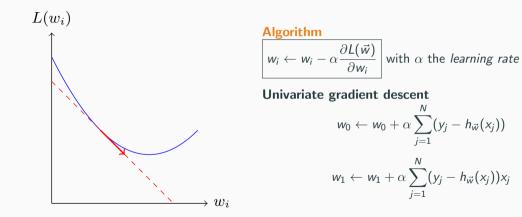
Show that the minimum of  $L(\vec{w})$  is obtained for :  $w_1 = \frac{(\sum x_j)(\sum y_j) - N(\sum x_j y_j)}{(\sum x_j)^2 - N(\sum x_j^2)}$  and  $w_0 = \frac{(\sum y_j) - w_1(\sum x_j)}{N}$ 

# Gradient descent





 $\boxed{\begin{array}{l} \textbf{Algorithm} \\ w_i \leftarrow w_i - \alpha \frac{\partial L(\vec{w})}{\partial w_i} \end{array}} \text{ with } \alpha \text{ the } \textit{learning rate} \end{array}}$ 



Sample set  $\{(\vec{x_1}, y_1), (\vec{x_2}, y_2), \dots, (\vec{x_N}, y_N)\} \subseteq \mathbb{R}^d \times \mathbb{R}$ 

Sample set  $\{(\vec{x_1}, y_1), (\vec{x_2}, y_2), \dots, (\vec{x_N}, y_N)\} \subseteq \mathbb{R}^d \times \mathbb{R}$ 

Hypothesis

$$h_{ec w}(ec x_j) = ec w ec x_j = \sum\limits_{i=0}^d w_i x_{ji}$$
 with :

• 
$$\vec{w} = (w_0, w_1, \dots, w_d) \in \mathbb{R}^{d+1}$$

• 
$$\vec{x_j} = (x_{j1}, x_{j2}, \dots, x_{jd}) \in \mathbb{R}^d$$

• 
$$x_{j0} = 1$$

 $\begin{array}{l} \textbf{Sample set} \\ \{(\vec{x_1}, y_1), (\vec{x_2}, y_2), \dots, (\vec{x_N}, y_N)\} \subseteq \mathbb{R}^d \times \mathbb{R} \end{array}$ 

Hypothesis

$$h_{ec w}(ec x_j) = ec w ec x_j = \sum\limits_{i=0}^d w_i x_{ji}$$
 with :

• 
$$\vec{w} = (w_0, w_1, \dots, w_d) \in \mathbb{R}^{d+1}$$

• 
$$\vec{x_j} = (x_{j1}, x_{j2}, \dots, x_{jd}) \in \mathbb{R}^d$$

• 
$$x_{j0} = 1$$

#### **Gradient descent**

$$w_i \leftarrow w_i - lpha \sum_{j=1}^N (y_j - h_{\vec{w}}(\vec{x_j})) x_{ji}$$

Sample set  $\{(\vec{x_1}, y_1), (\vec{x_2}, y_2), \dots, (\vec{x_N}, y_N)\} \subseteq \mathbb{R}^d \times \mathbb{R}$ 

Hypothesis

$$h_{ec w}(ec x_j) = ec w ec x_j = \sum\limits_{i=0}^d w_i x_{ji}$$
 with :

• 
$$\vec{w} = (w_0, w_1, \dots, w_d) \in \mathbb{R}^{d+1}$$

• 
$$\vec{x_j} = (x_{j1}, x_{j2}, \dots, x_{jd}) \in \mathbb{R}^d$$

• 
$$x_{j0} = 1$$

#### **Gradient descent**

$$w_i \leftarrow w_i - lpha \sum_{j=1}^N (y_j - h_{\vec{w}}(\vec{x_j})) x_{ji}$$

Analytic solution **X** : matrix of inputs (each row is an  $\vec{x_j}$ ), **y** : vector of outputs (each row is a  $y_j$ )  $L(\boldsymbol{w}) = \|\boldsymbol{X}.\boldsymbol{w} - \boldsymbol{y}\|^2$   $\nabla_{\boldsymbol{w}} L(\boldsymbol{w}) = 2\boldsymbol{X}^{\top}.(\boldsymbol{X}.\boldsymbol{w} - \boldsymbol{y}) = \boldsymbol{0}$  $\boldsymbol{w}^* = (\boldsymbol{X}^{\top}.\boldsymbol{X})^{-1}.\boldsymbol{X}^{\top}.\boldsymbol{y}$  : normal equation

Batch gradient descent

 $w_i \leftarrow w_i - \alpha \sum_{j=1}^{N} (y_j - h_{\vec{w}}(\vec{x_j})) x_{ji}$  (also called *deterministic gradient descent*)

#### Batch gradient descent

$$w_i \leftarrow w_i - \alpha \sum_{j=1}^{N} (y_j - h_{\vec{w}}(\vec{x_j})) x_{ji}$$
 (also called *deterministic gradient descent*)

#### Stochastic gradient descent (SGD)

1. select and remove a *minibatch* of m out of N training examples (randomly)

2. compute a step 
$$w_i \leftarrow w_i - \alpha \sum_{j=1}^m (y_j - h_{\vec{w}}(\vec{x_j})) x_{ji}$$

3. iterate until no more training examples

#### Batch gradient descent

$$w_i \leftarrow w_i - \alpha \sum_{j=1}^{N} (y_j - h_{\vec{w}}(\vec{x_j})) x_{ji}$$
 (also called *deterministic gradient descent*)

#### Stochastic gradient descent (SGD)

1. select and remove a *minibatch* of m out of N training examples (randomly)

2. compute a step 
$$w_i \leftarrow w_i - \alpha \sum_{j=1}^m (y_j - h_{\vec{w}}(\vec{x_j})) x_{ji}$$

3. iterate until no more training examples

# Epoch

A step that covers all N training examples

#### Batch gradient descent

$$w_i \leftarrow w_i - \alpha \sum_{j=1}^{N} (y_j - h_{\vec{w}}(\vec{x_j})) x_{ji}$$
 (also called *deterministic gradient descent*)

#### Stochastic gradient descent (SGD)

1. select and remove a *minibatch* of m out of N training examples (randomly)

2. compute a step 
$$w_i \leftarrow w_i - \alpha \sum_{j=1}^m (y_j - h_{\vec{w}}(\vec{x_j})) x_{ji}$$

3. iterate until no more training examples

#### Epoch

A step that covers all N training examples

# Complete algorithm

Iterate E epochs until convergence.

**Overfitting** In high-dimensional spaces, some irrelevant dimension might appear to be useful

#### Overfitting

In high-dimensional spaces, some irrelevant dimension might appear to be useful

**Regularization**  $Cost(h) = EmpLoss(h) + \lambda Complexity(h)$ 

#### Overfitting

In high-dimensional spaces, some irrelevant dimension might appear to be useful

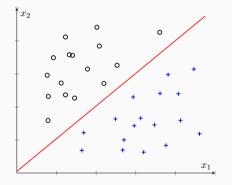
**Regularization**  $Cost(h) = EmpLoss(h) + \lambda Complexity(h)$ 

For linear functions

Complexity
$$(h_{\vec{w}}) = L_q(\vec{w}) = \sum_{i=0}^d |w_i|^q$$

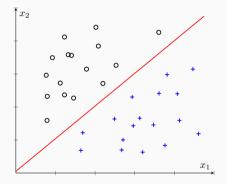
Usually, we use  $q = 1 : L_1$  regularization  $\rightarrow$  produces *sparse model* (remove attributes)

# Linear classification



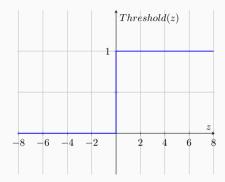
**Sample set**  $\{(\vec{x_1}, y_1), (\vec{x_2}, y_2), \dots, (\vec{x_N}, y_N)\} \subseteq \mathbb{R}^d \times \{0, 1\}$ 

# Linear classification

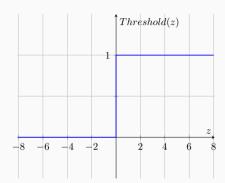


**Sample set**  $\{(\vec{x_1}, y_1), (\vec{x_2}, y_2), \dots, (\vec{x_N}, y_N)\} \subseteq \mathbb{R}^d \times \{0, 1\}$ 

**Hypothesis** The *decision boundary* is a linear separator.

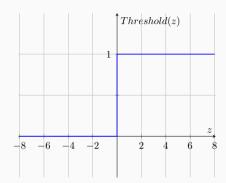


$$Threshold(z) = \begin{cases} 0 \text{ if } z < 0\\ 1 \text{ else} \end{cases}$$



**Hypothesis** 
$$h_{\vec{w}}(\vec{x_i}) = Threshold(\vec{w}.\vec{x_i})$$
 with  $\vec{w} \in \mathbb{R}^{d+1}$ 

$$Threshold(z) = \begin{cases} 0 \text{ if } z < 0 \\ 1 \text{ else} \end{cases}$$

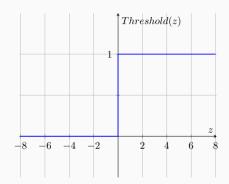


**Hypothesis**  $h_{\vec{w}}(\vec{x_i}) = Threshold(\vec{w}.\vec{x_i})$  with  $\vec{w} \in \mathbb{R}^{d+1}$ 

#### Perceptron learning rule

$$w_i \leftarrow w_i + lpha(y_j - h_{\vec{w}}(\vec{x_j}))x_{ji}$$

$$Threshold(z) = \begin{cases} 0 \text{ if } z < 0 \\ 1 \text{ else} \end{cases}$$



#### Hypothesis

 $h_{\vec{w}}(\vec{x_j}) = Threshold(\vec{w}.\vec{x_j})$  with  $\vec{w} \in \mathbb{R}^{d+1}$ 

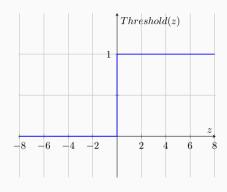
#### Perceptron learning rule

 $w_i \leftarrow w_i + lpha(y_j - h_{ec w}(ec x_j)) x_{ji}$ 

#### Issue

May not converge if data is not clearly separable (without noise)

$$Threshold(z) = \begin{cases} 0 \text{ if } z < 0 \\ 1 \text{ else} \end{cases}$$



$$Threshold(z) = \begin{cases} 0 \text{ if } z < 0 \\ 1 \text{ else} \end{cases}$$

Hypothesis

 $h_{\vec{w}}(\vec{x_j}) = Threshold(\vec{w}.\vec{x_j})$  with  $\vec{w} \in \mathbb{R}^{d+1}$ 

#### Perceptron learning rule

 $w_i \leftarrow w_i + \alpha(y_j - h_{\vec{w}}(\vec{x_j}))x_{ji}$ 

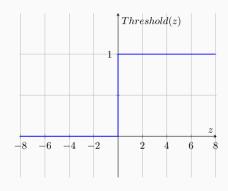
#### Issue

May not converge if data is not clearly separable (without noise)

#### Dynamic learning rate

 $\alpha(t) = \frac{c}{c+t}$  (decrease with time elapsing)

with c a fairly large constant



$$Threshold(z) = \begin{cases} 0 \text{ if } z < 0\\ 1 \text{ else} \end{cases}$$

Hypothesis

 $h_{ec w}(ec x_j) = Threshold(ec w.ec x_j)$  with  $ec w \in \mathbb{R}^{d+1}$ 

#### Perceptron learning rule

 $w_i \leftarrow w_i + lpha(y_j - h_{\vec{w}}(\vec{x_j}))x_{ji}$ 

#### Issue

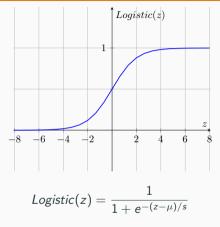
May not converge if data is not clearly separable (without noise)

# **Dynamic learning rate** $\alpha(t) = \frac{c}{c+t}$ (decrease with time elapsing)

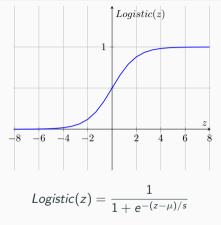
with c a fairly large constant

Technically, we require that :  $\sum\limits_{t=1}^\infty lpha(t) = \infty$  and  $\sum\limits_{t=1}^\infty lpha(t)^2 < \infty$ 

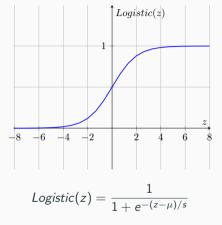
# Logistic linear classifier



 $\mu$  : location parameter (here  $\mu = 0$ ) s : scale parameter (here s = 1)

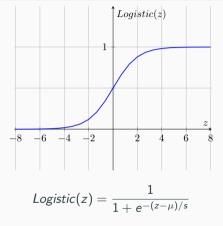


 $\mu$  : location parameter (here  $\mu = 0$ ) s : scale parameter (here s = 1) Hypothesis  $h_{\vec{w}}(\vec{x_j}) = Logistic(\vec{w}.\vec{x_j})$  with  $\vec{w} \in \mathbb{R}^{d+1}$ 



 $\mu$  : location parameter (here  $\mu = 0$ ) s : scale parameter (here s = 1) **Hypothesis**  $h_{\vec{w}}(\vec{x_i}) = Logistic(\vec{w}.\vec{x_i})$  with  $\vec{w} \in \mathbb{R}^{d+1}$ 

Why though? Logistic function is differentiable in 0!

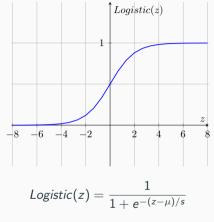


 $\mu$  : location parameter (here  $\mu = 0$ ) s : scale parameter (here s = 1) **Hypothesis**  $h_{\vec{w}}(\vec{x_i}) = Logistic(\vec{w}.\vec{x_i})$  with  $\vec{w} \in \mathbb{R}^{d+1}$ 

Why though? Logistic function is differentiable in 0!

#### **Gradient descent**

Find the logistic learning rule from the general formula of gradient descent :  $w_i \leftarrow w_i + \alpha \frac{\partial L(\vec{w})}{\partial w_i}$  (for a single example  $(\vec{x}, y)$ ).



 $\mu$  : location parameter (here  $\mu = 0$ ) s : scale parameter (here s = 1) **Hypothesis**  $h_{\vec{w}}(\vec{x_j}) = Logistic(\vec{w}.\vec{x_j})$  with  $\vec{w} \in \mathbb{R}^{d+1}$ 

Why though ? Logistic function is differentiable in 0!

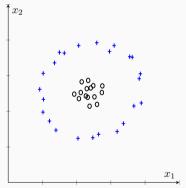
#### **Gradient descent**

Find the logistic learning rule from the general formula of gradient descent :  $w_i \leftarrow w_i + \alpha \frac{\partial L(\vec{w})}{\partial w_i}$  (for a single example  $(\vec{x}, y)$ ).

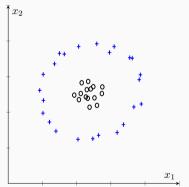
#### Logistic learning rule

 $w_i \leftarrow w_i + lpha(y_j - h_{ec w}(ec x_j))h_{ec w}(ec x_j)(1 - h_{ec w}(ec x_j))x_{ji}$ 

# What if .. the dataset is not *linearly* separable?



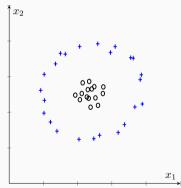
What if .. the dataset is not *linearly* separable?



#### Idea

Map into another space (generally higher dimensional) where it is linearly separable :  $\vec{x} \mapsto \phi(\vec{x})$ 

What if .. the dataset is not *linearly* separable?



#### Idea

Map into another space (generally higher dimensional) where it is linearly separable :  $\vec{x} \mapsto \phi(\vec{x})$ 

#### Change the space

Find a (possibly higher dimensional) space in which this dataset is linearly separable.

What if .. the dataset is not *linearly* separable?



#### Idea

Map into another space (generally higher dimensional) where it is linearly separable :  $\vec{x} \mapsto \phi(\vec{x})$ 

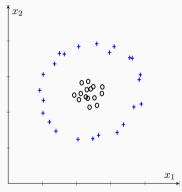
#### Change the space

Find a (possibly higher dimensional) space in which this dataset is linearly separable.

Kernel function

 $K(\vec{x_k}, \vec{x_j}) = \phi(\vec{x_k}).\phi(\vec{x_j})$ 

What if .. the dataset is not *linearly* separable?



#### Idea

Map into another space (generally higher dimensional) where it is linearly separable :  $\vec{x} \mapsto \phi(\vec{x})$ 

#### Change the space

Find a (possibly higher dimensional) space in which this dataset is linearly separable.

#### Kernel function

 $K(\vec{x_k}, \vec{x_j}) = \phi(\vec{x_k}).\phi(\vec{x_j})$ 

#### Reformulation

We can show that  $\vec{w} = \sum_{k=1}^{N} \delta_k \vec{x_k}$  then  $h_{\vec{w}}(\vec{x_j}) = \sum_{k=1}^{N} \delta_k \vec{x_k} \cdot \vec{x_j} \mapsto \sum_{k=1}^{N} \delta_k \phi(\vec{x_k}) \cdot \phi(\vec{x_j}) = \sum_{k=1}^{N} \delta_k \mathcal{K}(\vec{x_k}, \vec{x_j})$ 

# Linear regression in the new space $h_{\vec{w}}(\phi(\vec{x_j})) = \sum_{k=1}^{N} \delta_k K(\vec{x_k}, \vec{x_j})$

Linear regression in the new space  $h_{\vec{w}}(\phi(\vec{x_j})) = \sum_{k=1}^{N} \delta_k K(\vec{x_k}, \vec{x_j})$ 

# Kernel matrix $K \in \mathbb{R}^N \times \mathbb{R}^N$ s.t $K_{ij} = K(\vec{x_i}, \vec{x_j})$

# Linear regression in the new space

 $h_{ec w}(\phi(ec x_j)) = \sum_{k=1}^N \delta_k \mathcal{K}(ec x_k, ec x_j)$ 

# Kernel matrix $K \in \mathbb{R}^N \times \mathbb{R}^N$ s.t $K_{ij} = K(\vec{x_i}, \vec{x_j})$

#### Algorithm

We compute  $\vec{\delta}$  instead of  $\vec{w}$  :

 $\delta_i \leftarrow \delta_i + \alpha \gamma_i$ 

Linear regression in the new space  $h_{\vec{w}}(\phi(\vec{x_j})) = \sum_{k=1}^{N} \delta_k K(\vec{x_k}, \vec{x_j})$ 

Kernel matrix  $K \in \mathbb{R}^N \times \mathbb{R}^N$  s.t  $K_{ij} = K(\vec{x_i}, \vec{x_j})$ 

#### Algorithm

We compute  $\vec{\delta}$  instead of  $\vec{w}$  :

 $\delta_i \leftarrow \delta_i + \alpha \gamma_i$ 

#### Popular kernel functions

- Linear :  $K(\vec{x}, \vec{z}) = \vec{x} \cdot \vec{z}$
- Polynomial :  $K(\vec{x}, \vec{z}) = (1 + \vec{x}.\vec{z})^d$
- Radial Basis Function (RBF) :  $K(\vec{x}, \vec{z}) = e^{\frac{-||\vec{x}-\vec{x}||^2}{\sigma^2}}$
- Laplacian Kernel :  $K(\vec{x}, \vec{z}) = e^{\frac{-\|\vec{x}-\vec{z}\|}{\sigma}}$
- Sigmoïd Kernel :  $K(\vec{x}, \vec{z}) = tanh(a\vec{x}, \vec{z} + b)$

# demo

• Linear regression is in pratice computed with gradient descent

- Linear regression is in pratice computed with gradient descent
- A linear classifier with a hard threshold is called a **perceptron** and can be learnt with gradient descent if data is **linearly separable**

# Linear Regression and Classification - Summary

- Linear regression is in pratice computed with gradient descent
- A linear classifier with a hard threshold is called a **perceptron** and can be learnt with gradient descent if data is **linearly separable**
- A decreasing learning rate improve convergence

# Linear Regression and Classification - Summary

- Linear regression is in pratice computed with gradient descent
- A linear classifier with a hard threshold is called a **perceptron** and can be learnt with gradient descent if data is **linearly separable**
- A decreasing learning rate improve convergence
- Logistic regression replace the hard threshold by the logistic function

# Linear Regression and Classification - Summary

- Linear regression is in pratice computed with gradient descent
- A linear classifier with a hard threshold is called a **perceptron** and can be learnt with gradient descent if data is **linearly separable**
- A decreasing learning rate improve convergence
- Logistic regression replace the hard threshold by the logistic function
- The **kernel trick** transforms input data to a higher-dimensional space where a linear separator may exists

- Linear regression is in pratice computed with gradient descent
- A linear classifier with a hard threshold is called a **perceptron** and can be learnt with gradient descent if data is **linearly separable**
- A decreasing learning rate improve convergence
- Logistic regression replace the hard threshold by the logistic function
- The **kernel trick** transforms input data to a higher-dimensional space where a linear separator may exists

#### To go further ...

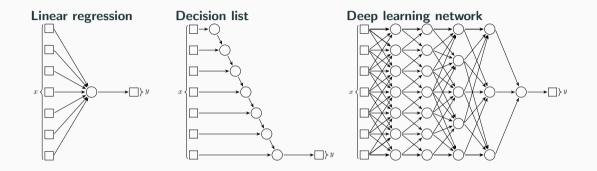
• Other non-parametric models : nearest neighbors and locally weighted regression

- Linear regression is in pratice computed with gradient descent
- A linear classifier with a hard threshold is called a **perceptron** and can be learnt with gradient descent if data is **linearly separable**
- A decreasing learning rate improve convergence
- Logistic regression replace the hard threshold by the logistic function
- The **kernel trick** transforms input data to a higher-dimensional space where a linear separator may exists

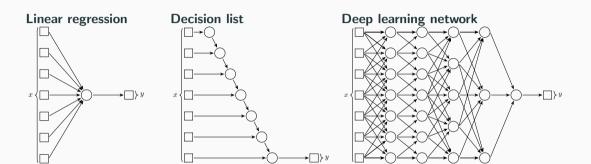
#### To go further ...

- Other non-parametric models : nearest neighbors and locally weighted regression
- Support Vector Machines

# Why is deep learning successful?



# Why is deep learning successful?



**Shallow** Short computation path **No interaction** No complex interaction between inputs

#### Deep

Long computation path and complex interactions between many inputs

#### Type of networks

- feedforward network : directed acyclic graph
- recurrent network : loops computing intermediate or final output

#### Type of networks

- feedforward network : directed acyclic graph
- recurrent network : loops computing intermediate or final output

#### Unit (a.k.a. Artificial Neuron)

- g<sub>j</sub> : activation function of unit j
- $\vec{w_j}$  : weights of unit j

#### Type of networks

- feedforward network : directed acyclic graph
- recurrent network : loops computing intermediate or final output

#### Unit (a.k.a. Artificial Neuron)

- g<sub>j</sub> : activation function of unit j
- $\vec{w_j}$  : weights of unit j

#### Type of networks

- feedforward network : directed acyclic graph
- recurrent network : loops computing intermediate or final output

#### Unit (a.k.a. Artificial Neuron)

- g<sub>j</sub> : activation function of unit j
- $\vec{w_j}$  : weights of unit j

#### **Activation functions**

• Logistic or Sigmoid :  $\sigma(x) = \frac{1}{1+e^{-x}}$ 

#### Type of networks

- feedforward network : directed acyclic graph
- recurrent network : loops computing intermediate or final output

#### Unit (a.k.a. Artificial Neuron)

#### • g<sub>j</sub> : activation function of unit j

•  $\vec{w_j}$  : weights of unit j

- Logistic or Sigmoid :  $\sigma(x) = \frac{1}{1+e^{-x}}$
- **ReLU** (Rectified Linear Unit) : ReLU(x) = max(0, x)

#### Type of networks

- feedforward network : directed acyclic graph
- recurrent network : loops computing intermediate or final output

#### Unit (a.k.a. Artificial Neuron)

- Logistic or Sigmoid :  $\sigma(x) = \frac{1}{1+e^{-x}}$
- **ReLU** (Rectified Linear Unit) : ReLU(x) = max(0, x)
- **Softplus** (smooth ReLU) : softplus(x) = log(1 + e<sup>x</sup>)

- g<sub>j</sub> : activation function of unit j
- $\vec{w_j}$  : weights of unit j

#### Type of networks

- feedforward network : directed acyclic graph
- recurrent network : loops computing intermediate or final output

#### Unit (a.k.a. Artificial Neuron)

- Logistic or Sigmoid :  $\sigma(x) = \frac{1}{1+e^{-x}}$
- **ReLU** (Rectified Linear Unit) : ReLU(x) = max(0, x)
- **Softplus** (smooth ReLU) : softplus(x) = log(1 + e<sup>x</sup>)
- tanh :  $tanh(x) = \frac{e^{2x}-1}{e^{2x}+1} \ (= 2\sigma(2x) 1)$

- g<sub>j</sub> : activation function of unit j
- $\vec{w_j}$  : weights of unit j

#### Type of networks

- feedforward network : directed acyclic graph
- recurrent network : loops computing intermediate or final output

#### Unit (a.k.a. Artificial Neuron)

$$a_i \longrightarrow b_j \qquad b_j = g_j(\sum_i w_{i,j}a_i)$$

- $g_j$  : activation function of unit j
- $\vec{w_j}$  : weights of unit j

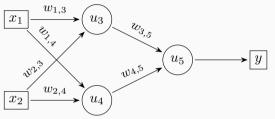
#### **Activation functions**

- Logistic or Sigmoid :  $\sigma(x) = \frac{1}{1+e^{-x}}$
- **ReLU** (Rectified Linear Unit) : ReLU(x) = max(0, x)
- **Softplus** (smooth ReLU) : softplus(x) = log(1 + e<sup>x</sup>)
- tanh :  $tanh(x) = \frac{e^{2x}-1}{e^{2x}+1} \ (= 2\sigma(2x) 1)$

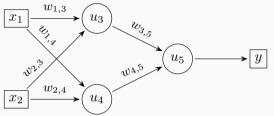
#### Universal approximation theorem

A network with just two layers (one non-linear and one linear) can approximate *any continuous function* to an *arbitrary degree of accuracy*.

#### Example



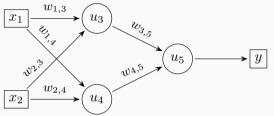
#### Example



#### Forward computation

$$\begin{split} \hat{y} &= g_5(w_{0,5} + w_{3,5}a_3 + w_{4,5}a_4) \\ \hat{y} &= g_5(w_{0,5} + w_{3,5}g_3(w_{0,3} + w_{1,3}x_1 + w_{2,3}x_2) \\ &+ w_{4,5}g_4(w_{0,4} + w_{1,4}x_1 + w_{2,4}x_2)) \end{split}$$

#### Example

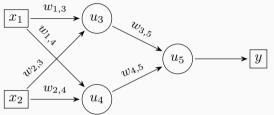


#### Forward computation

$$\begin{split} \hat{y} &= g_5(w_{0,5} + w_{3,5}a_3 + w_{4,5}a_4) \\ \hat{y} &= g_5(w_{0,5} + w_{3,5}g_3(w_{0,3} + w_{1,3}x_1 + w_{2,3}x_2) \\ &+ w_{4,5}g_4(w_{0,4} + w_{1,4}x_1 + w_{2,4}x_2)) \end{split}$$

$$h_{W}(x) = g^{(2)}(W^{(2)}g^{(1)}(W^{(1)}x))$$

#### Example



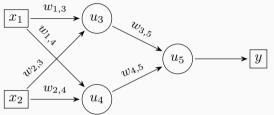
# **Gradient descent** $Loss(h_W) = L_2(y, h_W(x)) = (y - \hat{y})^2$

#### Forward computation

$$\begin{split} \hat{y} &= g_5(w_{0,5} + w_{3,5}a_3 + w_{4,5}a_4) \\ \hat{y} &= g_5(w_{0,5} + w_{3,5}g_3(w_{0,3} + w_{1,3}x_1 + w_{2,3}x_2) \\ &+ w_{4,5}g_4(w_{0,4} + w_{1,4}x_1 + w_{2,4}x_2)) \end{split}$$

$$h_{W}(x) = g^{(2)}(W^{(2)}g^{(1)}(W^{(1)}x))$$

#### Example



#### Forward computation

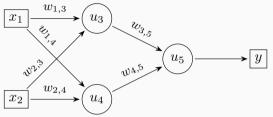
$$\begin{split} \hat{y} &= g_5(w_{0,5} + w_{3,5}a_3 + w_{4,5}a_4) \\ \hat{y} &= g_5(w_{0,5} + w_{3,5}g_3(w_{0,3} + w_{1,3}x_1 + w_{2,3}x_2) \\ &+ w_{4,5}g_4(w_{0,4} + w_{1,4}x_1 + w_{2,4}x_2)) \end{split}$$

$$h_{W}(x) = g^{(2)}(W^{(2)}g^{(1)}(W^{(1)}x))$$

**Gradient descent**  $Loss(h_W) = L_2(y, h_W(x)) = (y - \hat{y})^2$ 

Output layer  $\frac{\partial Loss(h_W)}{\partial w_{3,5}} = \dots$ ?

#### Example



#### Forward computation

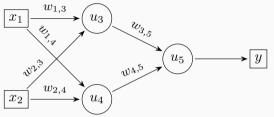
$$\begin{split} \hat{y} &= g_5(w_{0,5} + w_{3,5}a_3 + w_{4,5}a_4) \\ \hat{y} &= g_5(w_{0,5} + w_{3,5}g_3(w_{0,3} + w_{1,3}x_1 + w_{2,3}x_2) \\ &+ w_{4,5}g_4(w_{0,4} + w_{1,4}x_1 + w_{2,4}x_2)) \end{split}$$

$$h_{W}(x) = g^{(2)}(W^{(2)}g^{(1)}(W^{(1)}x))$$

**Gradient descent**  $Loss(h_W) = L_2(y, h_W(x)) = (y - \hat{y})^2$ 

 $\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} Output \ layer \\ \frac{\partial Loss(h_W)}{\partial w_{3,5}} = \dots \\ -2(y - \hat{y})g_5'(w_{0,5} + w_{3,5}a_3 + w_{4,5}a_4)a_3 = \Delta_5 a_3 \end{array} \end{array}$ 

#### Example



#### Forward computation

$$\begin{split} \hat{y} &= g_5(w_{0,5} + w_{3,5}a_3 + w_{4,5}a_4) \\ \hat{y} &= g_5(w_{0,5} + w_{3,5}g_3(w_{0,3} + w_{1,3}x_1 + w_{2,3}x_2) \\ &+ w_{4,5}g_4(w_{0,4} + w_{1,4}x_1 + w_{2,4}x_2)) \end{split}$$

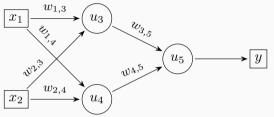
$$h_{W}(x) = g^{(2)}(W^{(2)}g^{(1)}(W^{(1)}x))$$

**Gradient descent**  $Loss(h_W) = L_2(y, h_W(x)) = (y - \hat{y})^2$ 

Output layer  $\frac{\partial Loss(h_W)}{\partial w_{3,5}} = \dots$  $-2(y - \hat{y})g'_5(w_{0,5} + w_{3,5}a_3 + w_{4,5}a_4)a_3 = \Delta_5a_3$ 

 $\frac{\text{Hidden layer}}{\frac{\partial \text{Loss}(h_W)}{\partial w_{1,3}}} = \dots ?$ 

#### Example



#### Forward computation

$$\begin{split} \hat{y} &= g_5(w_{0,5} + w_{3,5}a_3 + w_{4,5}a_4) \\ \hat{y} &= g_5(w_{0,5} + w_{3,5}g_3(w_{0,3} + w_{1,3}x_1 + w_{2,3}x_2) \\ &+ w_{4,5}g_4(w_{0,4} + w_{1,4}x_1 + w_{2,4}x_2)) \end{split}$$

$$h_{W}(x) = g^{(2)}(W^{(2)}g^{(1)}(W^{(1)}x))$$

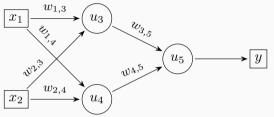
**Gradient descent**  $Loss(h_W) = L_2(y, h_W(x)) = (y - \hat{y})^2$ 

 $\begin{array}{l} \begin{array}{l} \textbf{Output layer} \\ \frac{\partial Loss(h_W)}{\partial w_{3,5}} = \dots \\ -2(y - \hat{y})g_5'(w_{0,5} + w_{3,5}a_3 + w_{4,5}a_4)a_3 = \Delta_5 a_3 \end{array}$ 

 $\begin{array}{l} \mbox{Hidden layer} \\ \frac{\partial Loss(h_W)}{\partial w_{1,3}} = \dots \\ \Delta_5 w_{3,5} g_3'(w_{0,3} + w_{1,3} x_1 + w_{2,3} x_2) x_1 = \Delta_3 x_1 \end{array}$ 

23/42

#### Example



#### Forward computation

$$\begin{split} \hat{y} &= g_5(w_{0,5} + w_{3,5}a_3 + w_{4,5}a_4) \\ \hat{y} &= g_5(w_{0,5} + w_{3,5}g_3(w_{0,3} + w_{1,3}x_1 + w_{2,3}x_2) \\ &+ w_{4,5}g_4(w_{0,4} + w_{1,4}x_1 + w_{2,4}x_2)) \end{split}$$

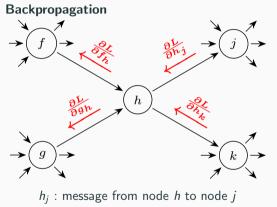
 $h_{W}(x) = g^{(2)}(W^{(2)}g^{(1)}(W^{(1)}x))$ 

**Gradient descent**  $Loss(h_W) = L_2(y, h_W(x)) = (y - \hat{y})^2$ 

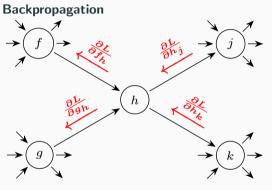
Output layer  $\frac{\partial Loss(h_W)}{\partial w_{3,5}} = \dots$  $-2(y - \hat{y})g'_5(w_{0,5} + w_{3,5}a_3 + w_{4,5}a_4)a_3 = \Delta_5 a_3$ 

 $\begin{array}{l} \mbox{Hidden layer} \\ \frac{\partial Loss(h_W)}{\partial w_{1,3}} = \dots \\ \Delta_5 w_{3,5} g'_3(w_{0,3} + w_{1,3} x_1 + w_{2,3} x_2) x_1 = \Delta_3 x_1 \end{array}$ 

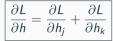
**Vanishing gradient** When  $g'_i(in_i) \approx 0 \rightarrow$  learning stops



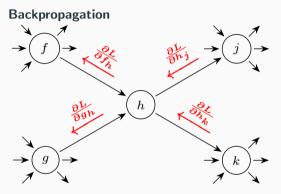
 $(h_j = h(f_h, g_h))$ 



#### **Contribution of** *h* **on** *L*



 $h_j$  : message from node h to node j $(h_j = h(f_h, g_h))$ 



 $h_j$ : message from node h to node j $(h_j = h(f_h, g_h))$ 

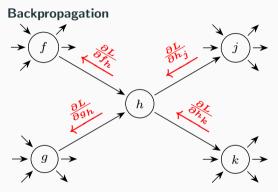
**Contribution of** *h* **on** *L* 

| $\partial l$                           | $\partial L$                             | ∂L                                    |
|----------------------------------------|------------------------------------------|---------------------------------------|
| $\left  \overline{\partial I} \right $ | $\overline{h} = \overline{\partial h_j}$ | $+ \frac{\partial h_k}{\partial h_k}$ |

#### Backpropagate

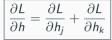
| $\boxed{\frac{\partial L}{\partial f_h} = \frac{\partial L}{\partial h} \frac{\partial h}{\partial f_h}}$ | and | $\frac{\partial L}{\partial g_h} =$ | $= \frac{\partial L}{\partial h} \frac{\partial h}{\partial g_h}$ |
|-----------------------------------------------------------------------------------------------------------|-----|-------------------------------------|-------------------------------------------------------------------|
|-----------------------------------------------------------------------------------------------------------|-----|-------------------------------------|-------------------------------------------------------------------|

- $\frac{\partial L}{\partial h}$  : already computed at previous step
- $\frac{\partial h}{\partial f_h}$  : specific to the type of node h



 $h_j$  : message from node h to node j $(h_j = h(f_h, g_h))$ 

**Contribution of** *h* **on** *L* 



#### Backpropagate

| $\frac{\partial L}{\partial f} = \frac{\partial L}{\partial h} \frac{\partial h}{\partial f}$ | and | $\frac{\partial L}{\partial \sigma} =$ | $=\frac{\partial L}{\partial h}\frac{\partial h}{\partial a}$ |
|-----------------------------------------------------------------------------------------------|-----|----------------------------------------|---------------------------------------------------------------|
| $OT_h OT OT_h$                                                                                |     | Ogh                                    | $On Og_h$                                                     |

- $\frac{\partial L}{\partial h}$  : already computed at previous step
- $\frac{\partial h}{\partial f_h}$  : specific to the type of node h

#### Until ..

... we reach a node corresponding to a parameter  $w : \frac{\partial L}{\partial w} \rightarrow$  update w

General gradient descent  $W \leftarrow W - \alpha \nabla_W L(W)$ 

Batches

- When *W* dimensionality and the training set are very large → minibatch
- Gradient contributions of each batch are independent  $\rightarrow$  **parallel** computing (GPU or TPU)

Batches

- When *W* dimensionality and the training set are very large → minibatch
- Gradient contributions of each batch are independent  $\rightarrow$  **parallel** computing (GPU or TPU)

Decreasing learning rate  $\alpha(t)$  decreasing function  $\rightarrow$  find the right schedule

Batches

- When *W* dimensionality and the training set are very large → minibatch
- Gradient contributions of each batch are independent  $\rightarrow$  **parallel** computing (GPU or TPU)

Decreasing learning rate  $\alpha(t)$  decreasing function  $\rightarrow$  find the right schedule

Gradient has high variance on small batches and thus may point to a wrong direction ..

#### Batches

- When *W* dimensionality and the training set are very large → minibatch
- Gradient contributions of each batch are independent  $\rightarrow$  **parallel** computing (GPU or TPU)

# Decreasing learning rate $\alpha(t)$ decreasing function $\rightarrow$ find the right schedule

**Gradient has high variance on small batches** and thus may point to a wrong direction ..

• increase minibatch size as training proceeds

#### Batches

- When *W* dimensionality and the training set are very large → minibatch
- Gradient contributions of each batch are independent  $\rightarrow$  **parallel** computing (GPU or TPU)

# Decreasing learning rate $\alpha(t)$ decreasing function $\rightarrow$ find the right schedule

Gradient has high variance on small batches and thus may point to a wrong direction ..

- increase minibatch size as training proceeds
- momemtum : keep a running average of the gradient

#### Batches

- When *W* dimensionality and the training set are very large → minibatch
- Gradient contributions of each batch are independent  $\rightarrow$  **parallel** computing (GPU or TPU)

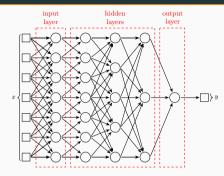
Decreasing learning rate  $\alpha(t)$  decreasing function  $\rightarrow$  find the right schedule

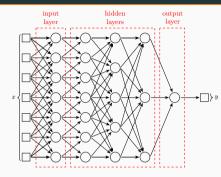
Gradient has high variance on small batches and thus may point to a wrong direction ..

- increase minibatch size as training proceeds
- momemtum : keep a running average of the gradient

## **Batch normalization**

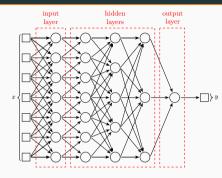
For each example *i* of the minibatch, replace each output  $z_i$  of each node by  $\hat{z}_i = \gamma \frac{z_i - \mu}{\sqrt{\varepsilon + \sigma^2}} + \beta$  ( $\mu$  : mean,  $\sigma$  : standard deviation, within the minibatch) ( $\varepsilon > 0$ ) ( $\gamma$  and  $\beta$  : new parameters)





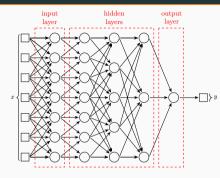
## Input encoding

• generally straighforward :  $\{\top, \bot\} \rightarrow \{0, 1\}, \mathbb{R} \rightarrow \mathbb{R}$ , log scale for big magnitudes, ...



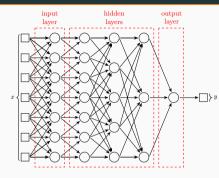
## Input encoding

- generally straighforward :  $\{\top, \bot\} \to \{0, 1\}, \mathbb{R} \to \mathbb{R}$ , log scale for big magnitudes, ...
- $\bullet \ \mbox{categories} \rightarrow \mbox{one-hot encoding}$



## Input encoding

- generally straighforward :  $\{\top, \bot\} \to \{0, 1\}, \mathbb{R} \to \mathbb{R}$ , log scale for big magnitudes, ...
- $\bullet \ \mbox{categories} \rightarrow \mbox{one-hot encoding}$
- images  $\rightarrow$  array-like structure to represent **adjacency**

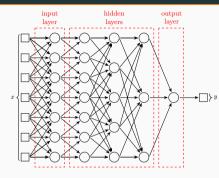


#### Input encoding

- generally straighforward :  $\{\top, \bot\} \to \{0, 1\}, \mathbb{R} \to \mathbb{R}$ , log scale for big magnitudes, ...
- $\bullet \ \mbox{categories} \rightarrow \mbox{one-hot} \ \mbox{encoding}$
- images  $\rightarrow$  array-like structure to represent **adjacency**

## Output encoding

• multiclass  $\rightarrow$  one-hot encoding : probability to be in the class ksoftmax layer :  $softmax(\vec{in})_k = \frac{e^{in_k}}{\sum e^{in_{k'}}}$ 

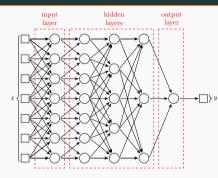


### Input encoding

- generally straighforward :  $\{\top, \bot\} \to \{0, 1\}, \mathbb{R} \to \mathbb{R}$ , log scale for big magnitudes, ...
- $\bullet \mbox{ categories} \rightarrow \mbox{ one-hot encoding}$
- images  $\rightarrow$  array-like structure to represent **adjacency**

## Output encoding

- multiclass  $\rightarrow$  one-hot encoding : probability to be in the class ksoftmax layer :  $softmax(\vec{in})_k = \frac{e^{in_k}}{\sum e^{in_{k'}}}$
- $\bullet \ \ \text{regression} \rightarrow \text{linear layer}$



## Hidden layer

- 1985-2010 : sigmoid or tanh
- now : *ReLU* and *softplus* more popular (vanishing gradient)

## Input encoding

- generally straighforward :  $\{\top, \bot\} \to \{0, 1\}, \mathbb{R} \to \mathbb{R}$ , log scale for big magnitudes, ...
- $\bullet \ \ \mathsf{categories} \to \mathbf{one-hot} \ \mathbf{encoding}$
- images  $\rightarrow$  array-like structure to represent **adjacency**

## Output encoding

- multiclass → one-hot encoding : probability to be in the class k
   softmax layer : softmax(in)<sub>k</sub> = e<sup>ink</sup>/∑e<sup>ink'</sup>
- regression  $\rightarrow$  linear layer

 $\begin{array}{l} \textbf{Cross-entropy}\\ \text{Measure of dissimilarity between two}\\ \text{distributions P and Q}: \end{array}$ 

$$egin{aligned} & H(P,Q) = -E_{oldsymbol{z}\sim P(oldsymbol{z})}(\log Q(oldsymbol{z})) = \ & -\int P(oldsymbol{z})\log Q(oldsymbol{z})doldsymbol{z} \end{aligned}$$

 $\begin{array}{l} \textbf{Cross-entropy}\\ \text{Measure of dissimilarity between two}\\ \text{distributions P and Q}: \end{array}$ 

$$egin{aligned} & H(P, Q) = -E_{oldsymbol{z} \sim P(oldsymbol{z})}(\log Q(oldsymbol{z})) = \ & -\int P(oldsymbol{z})\log Q(oldsymbol{z})doldsymbol{z} \end{aligned}$$

For classification

- *P* : the true distribution over training examples
- Q : the predictive hypothesis

**Cross-entropy** 

Measure of dissimilarity between two distributions P and Q :

$$egin{aligned} & H(P, Q) = -E_{oldsymbol{z} \sim P(oldsymbol{z})}(\log Q(oldsymbol{z})) = \ & -\int P(oldsymbol{z})\log Q(oldsymbol{z})doldsymbol{z} \end{aligned}$$

For classification

- *P* : the true distribution over training examples
- Q : the predictive hypothesis

## **Binary classification**

- probability of output y = 1 :  $q_{y=1} = \hat{y}$
- probability of output y = 0 :  $q_{y=0} = 1 \hat{y}$

$$H(p,q) = -\sum_i p_i \log q_i =$$
  
 $-y \log \hat{y} - (1-y) \log(1-\hat{y})$ 

**Cross-entropy** 

Measure of dissimilarity between two distributions P and Q :

$$egin{aligned} & H(P, Q) = -E_{oldsymbol{z} \sim P(oldsymbol{z})}(\log Q(oldsymbol{z})) = \ & -\int P(oldsymbol{z})\log Q(oldsymbol{z})doldsymbol{z} \end{aligned}$$

For classification

- *P* : the true distribution over training examples
- Q : the predictive hypothesis

## **Binary classification**

- probability of output y = 1 :  $q_{y=1} = \hat{y}$
- probability of output y = 0 :  $q_{y=0} = 1 \hat{y}$

$$H(p,q) = -\sum_{i} p_i \log q_i =$$
  
 $-y \log \hat{y} - (1-y) \log(1-\hat{y})$ 

Cross-entropy loss  

$$L(\boldsymbol{w}) = \frac{1}{N} \sum_{k=1}^{N} H(p_k, q_k)$$

$$L(\boldsymbol{w}) = -\frac{1}{N} \sum_{k=1}^{N} (y_k \log \hat{y_k} + (1 - y_k) \log(1 - \hat{y_k}))$$

Image specificities

#### Image specificities

 adjacency → units should receive input from a *small local* region

#### Image specificities

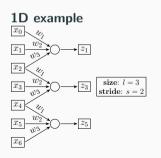
- adjacency → units should receive input from a *small local* region
- space invariance  $\rightarrow$  units should share their weights

#### Image specificities

- adjacency → units should receive input from a *small local* region
- space invariance  $\rightarrow$  units should share their weights

## Convolution

• **kernel** : pattern of weights that is *replicated* 

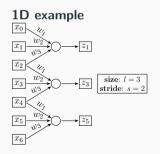


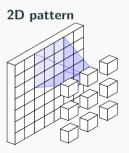
#### Image specificities

- adjacency → units should receive input from a *small local* region
- space invariance  $\rightarrow$  units should share their weights

## Convolution

- **kernel** : pattern of weights that is *replicated*
- **convolution** : apply a kernel  $\boldsymbol{k}$  of size l :  $\boxed{\boldsymbol{z} = \boldsymbol{x} * \boldsymbol{k}} \rightarrow z_i = \sum_{j=1}^l k_j x_{j+i-(l+1)/2}$



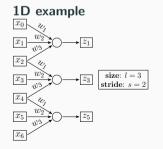


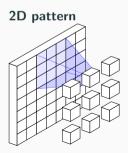
#### Image specificities

- adjacency → units should receive input from a *small local* region
- space invariance  $\rightarrow$  units should share their weights

## Convolution

- **kernel** : pattern of weights that is *replicated*
- **convolution** : apply a kernel  $\boldsymbol{k}$  of size l :  $\boxed{\boldsymbol{z} = \boldsymbol{x} * \boldsymbol{k}} \rightarrow z_i = \sum_{j=1}^l k_j x_{j+i-(l+1)/2}$





## Pooling

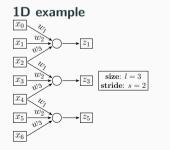
• average pooling :  $\mathbf{k} = (\frac{1}{l}, \dots, \frac{1}{l})$ (if s > 1 : downsampling)

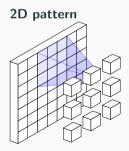
#### Image specificities

- adjacency → units should receive input from a *small local* region
- space invariance  $\rightarrow$  units should share their weights

## Convolution

- **kernel** : pattern of weights that is *replicated*
- **convolution** : apply a kernel  $\boldsymbol{k}$  of size l :  $\boxed{\boldsymbol{z} = \boldsymbol{x} * \boldsymbol{k}} \rightarrow z_i = \sum_{j=1}^l k_j x_{j+i-(l+1)/2}$





## Pooling

- average pooling : k = (<sup>1</sup>/<sub>1</sub>,..., <sup>1</sup>/<sub>l</sub>) (if s > 1 : downsampling)
- max-pooling :

$$z_i = \max_{1 \le j \le l} (x_{j+i-(l+1)/2})$$



#### Tensor

Multidimensional arrays of any dimension :

- 1D : vector
- 2D : matrix
- ...

#### Tensor

Multidimensional arrays of any dimension :

- 1D : vector
- 2D : matrix
- ...

## Example

input minibatch of 64 images RGB 256x256 256x256x3x64

#### Tensor

Multidimensional arrays of any dimension :

- 1D : vector
- 2D : matrix
- ...

## Example

input  $\longrightarrow$  output minibatch of 64 images RGB 256x256 96 kernels 5x5x3 with s = 2 feature map 256x256x3x64  $\longrightarrow$ 

#### Tensor

Multidimensional arrays of any dimension :

- 1D : vector
- 2D : matrix
- ...

## Example

input  $\longrightarrow$  output minibatch of 64 images RGB 256x256 96 kernels 5x5x3 with s = 2 **feature map** 256x256x3x64  $\longrightarrow$  128x128x96x64

To avoid vanishing gradient in very deep networks ightarrow keep information of the previous layer

To avoid vanishing gradient in very deep networks ightarrow keep information of the previous layer

### Residual

Instead of  $z^{(i)} = h(z^{(i-1)}) = g^{(i)}(W^{(i)}z^{(i-1)}) \rightarrow z^{(i)} = g_r^{(i)}(z^{(i-1)} + f(z^{(i-1)}))$ 

To avoid vanishing gradient in very deep networks  $\rightarrow$  keep information of the previous layer

### Residual

Instead of  $z^{(i)} = h(z^{(i-1)}) = g^{(i)}(W^{(i)}z^{(i-1)}) \rightarrow z^{(i)} = g_r^{(i)}(z^{(i-1)} + f(z^{(i-1)}))$ 

• 
$$g_r^{(i)}$$
 : activation function

To avoid vanishing gradient in very deep networks ightarrow keep information of the previous layer

### Residual

Instead of  $z^{(i)} = h(z^{(i-1)}) = g^{(i)}(W^{(i)}z^{(i-1)}) \rightarrow z^{(i)} = g_r^{(i)}(z^{(i-1)} + f(z^{(i-1)}))$ 

- $g_r^{(i)}$  : activation function
- f typically a linear + non-linear function : f(z) = Vg(Wz)

To avoid vanishing gradient in very deep networks ightarrow keep information of the previous layer

### Residual

Instead of  $z^{(i)} = h(z^{(i-1)}) = g^{(i)}(W^{(i)}z^{(i-1)}) \rightarrow z^{(i)} = g_r^{(i)}(z^{(i-1)} + f(z^{(i-1)}))$ 

- $g_r^{(i)}$  : activation function
- f typically a linear + non-linear function : f(z) = Vg(Wz)

#### Disable a layer

We can make layers that can be disabled by setting  $\mathbf{V} = \mathbf{0}$ : if  $g_r = ReLU$  (at least for layers i - 1 and i),  $\mathbf{z}^{(i-1)} = ReLU(\mathbf{in}^{(i-1)})$  then  $\mathbf{z}^{(i)} = ReLU(\mathbf{z}^{(i-1)}) = ReLU(ReLU(\mathbf{in}^{(i-1)})) = ReLU(\mathbf{in}^{(i-1)}) = \mathbf{z}^{(i-1)}$ 

Time series A sequence of inputs  $x_1, \ldots, x_T$  and observed outputs  $y_1, \ldots, y_T$ . **Time series** A sequence of inputs  $x_1, \ldots, x_T$  and observed outputs  $y_1, \ldots, y_T$ .

## Signal or Text processing

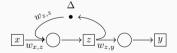
- time series  $\rightarrow$  we need a memory z
- $\bullet~$  time invariance  $\rightarrow$  share weights at each time step

**Time series** A sequence of inputs  $x_1, \ldots, x_T$  and observed outputs  $y_1, \ldots, y_T$ .

### Signal or Text processing

- time series  $\rightarrow$  we need a memory z
- $\bullet~$  time invariance  $\rightarrow$  share weights at each time step

### **Basic RNN**

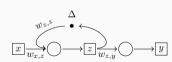


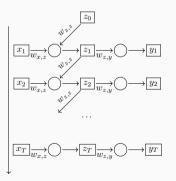
Time series A sequence of inputs  $x_1, \ldots, x_T$  and observed outputs  $y_1, \ldots, y_T$ .

### Signal or Text processing

- time series → we need a memory z
- time invariance  $\rightarrow$  share weights at each time step

### **Basic RNN**



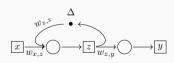


**Time series** A sequence of inputs  $x_1, \ldots, x_T$  and observed outputs  $y_1, \ldots, y_T$ .

### Signal or Text processing

- time series → we need a memory z
- time invariance  $\rightarrow$  share weights at each time step

### **Basic RNN**



Forward  $z_t = g_z(w_{z,z}z_{t-1} + w_{x,z}x_t)$ and  $\hat{y}_t = g_y(w_{y,z}z_t)$ 

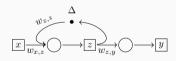


**Time series** A sequence of inputs  $x_1, \ldots, x_T$  and observed outputs  $y_1, \ldots, y_T$ .

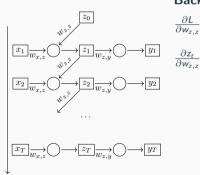
### Signal or Text processing

- time series  $\rightarrow$  we need a memory z
- time invariance  $\rightarrow$  share weights at each time step

### **Basic RNN**



Forward  $z_t = g_z(w_{z,z}z_{t-1} + w_{x,z}x_t)$ and  $\hat{y}_t = g_y(w_{y,z}z_t)$ 



#### Backpropagation

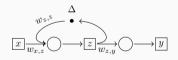
$$\frac{\partial L}{\partial w_{z,z}} = \sum_{t=1}^{T} -2(y_t - \hat{y}_t)g'_y(in_{y,t})w_{z,y}\frac{\partial z_t}{w_{z,z}}$$
$$\frac{\partial z_t}{\partial w_{z,z}} = g'_z(in_{z,t})(z_{t-1} + w_{z,z}\frac{\partial z_{t-1}}{w_{z,z}})$$

**Time series** A sequence of inputs  $x_1, \ldots, x_T$  and observed outputs  $y_1, \ldots, y_T$ .

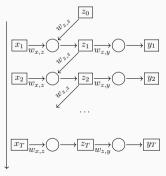
## Signal or Text processing

- time series  $\rightarrow$  we need a memory z
- time invariance  $\rightarrow$  share weights at each time step

### **Basic RNN**



Forward  $z_t = g_z(w_{z,z}z_{t-1} + w_{x,z}x_t)$ and  $\hat{y}_t = g_y(w_{y,z}z_t)$ 



### Backpropagation

$$\frac{\partial L}{\partial w_{z,z}} = \sum_{t=1}^{T} -2(y_t - \hat{y}_t)g_y'(in_{y,t})w_{z,y}\frac{\partial z_t}{w_{z,z}}$$

$$\frac{\partial z_t}{\partial w_{z,z}} = g'_z(in_{z,t})(z_{t-1} + w_{z,z}\frac{\partial z_{t-1}}{w_{z,z}})$$

**Issue** Gradient at step *T* will include terms proportional to  $w_{z,z} \prod_{t=1}^{T} g'_{z}(in_{z,t})$ 

 $\hookrightarrow$  vanishing  $(w_{z,z} < 1)$  or *exploding*  $(w_{z,z} > 1)$  gradient

Long Short-Term Memory (LSTM)

• memory cell c : copied at each time step

### Long Short-Term Memory (LSTM)

• memory cell c : copied at each time step

### Long Short-Term Memory (LSTM)

• memory cell c : copied at each time step

Gating units :

• **forget gate** *f* : elements of the memory to *forget/remember* 

### Long Short-Term Memory (LSTM)

• memory cell c : copied at each time step

- **forget gate** *f* : elements of the memory to *forget/remember*
- **input gate** *i* : elements of the memory to *update with new info* from the inputs

### Long Short-Term Memory (LSTM)

• memory cell c : copied at each time step

- **forget gate** *f* : elements of the memory to *forget/remember*
- **input gate** *i* : elements of the memory to *update with new info* from the inputs
- **output gate** *o* : elements of the memory to *transfer* to the short-term memory

### Long Short-Term Memory (LSTM)

• memory cell c : copied at each time step

- **forget gate** *f* : elements of the memory to *forget/remember*
- **input gate** *i* : elements of the memory to *update with new info* from the inputs
- **output gate** *o* : elements of the memory to *transfer* to the short-term memory
- short-term memory z : as for basic RNN

### Long Short-Term Memory (LSTM)

• memory cell c : copied at each time step

Gating units :

- **forget gate** *f* : elements of the memory to *forget/remember*
- **input gate** *i* : elements of the memory to *update with new info* from the inputs
- **output gate** *o* : elements of the memory to *transfer* to the short-term memory
- short-term memory z : as for basic RNN

• 
$$f_t = \sigma(W_{x,f}x_t + W_{z,f}z_{t-1})$$

### Long Short-Term Memory (LSTM)

• memory cell c : copied at each time step

Gating units :

- **forget gate** *f* : elements of the memory to *forget/remember*
- **input gate** *i* : elements of the memory to *update with new info* from the inputs
- **output gate** *o* : elements of the memory to *transfer* to the short-term memory
- short-term memory z : as for basic RNN

- $\mathbf{f}_t = \sigma(\mathbf{W}_{x,f}\mathbf{x}_t + \mathbf{W}_{z,f}\mathbf{z}_{t-1})$
- $\mathbf{i}_t = \sigma(\mathbf{W}_{x,i}\mathbf{x}_t + \mathbf{W}_{z,i}\mathbf{z}_{t-1})$

### Long Short-Term Memory (LSTM)

• memory cell c : copied at each time step

Gating units :

- **forget gate** *f* : elements of the memory to *forget/remember*
- **input gate** *i* : elements of the memory to *update with new info* from the inputs
- **output gate** *o* : elements of the memory to *transfer* to the short-term memory
- short-term memory z : as for basic RNN

- $\mathbf{f}_t = \sigma(\mathbf{W}_{x,f}\mathbf{x}_t + \mathbf{W}_{z,f}\mathbf{z}_{t-1})$
- $\mathbf{i}_t = \sigma(\mathbf{W}_{x,i}\mathbf{x}_t + \mathbf{W}_{z,i}\mathbf{z}_{t-1})$
- $\boldsymbol{o}_t = \sigma(\boldsymbol{W}_{x,o}\boldsymbol{x}_t + \boldsymbol{W}_{z,o}\boldsymbol{z}_{t-1})$

### Long Short-Term Memory (LSTM)

• memory cell c : copied at each time step

Gating units :

- **forget gate** *f* : elements of the memory to *forget/remember*
- **input gate** *i* : elements of the memory to *update with new info* from the inputs
- **output gate** *o* : elements of the memory to *transfer* to the short-term memory
- short-term memory z : as for basic RNN

- $f_t = \sigma(W_{x,f}x_t + W_{z,f}z_{t-1})$
- $\mathbf{i}_t = \sigma(\mathbf{W}_{x,i}\mathbf{x}_t + \mathbf{W}_{z,i}\mathbf{z}_{t-1})$
- $\boldsymbol{o}_t = \sigma(\boldsymbol{W}_{x,o}\boldsymbol{x}_t + \boldsymbol{W}_{z,o}\boldsymbol{z}_{t-1})$
- $\boldsymbol{c}_t = \boldsymbol{c}_{t-1} \odot \boldsymbol{f}_t + \boldsymbol{i}_t \odot tanh(\boldsymbol{W}_{x,c} \boldsymbol{x}_t + \boldsymbol{W}_{z,c} \boldsymbol{z}_{t-1})$

### Long Short-Term Memory (LSTM)

• memory cell c : copied at each time step

Gating units :

- **forget gate** *f* : elements of the memory to *forget/remember*
- **input gate** *i* : elements of the memory to *update with new info* from the inputs
- **output gate** *o* : elements of the memory to *transfer* to the short-term memory
- short-term memory z : as for basic RNN

- $f_t = \sigma(W_{x,f}x_t + W_{z,f}z_{t-1})$
- $\mathbf{i}_t = \sigma(\mathbf{W}_{x,i}\mathbf{x}_t + \mathbf{W}_{z,i}\mathbf{z}_{t-1})$
- $\boldsymbol{o}_t = \sigma(\boldsymbol{W}_{x,o}\boldsymbol{x}_t + \boldsymbol{W}_{z,o}\boldsymbol{z}_{t-1})$
- $\boldsymbol{c}_t = \boldsymbol{c}_{t-1} \odot \boldsymbol{f}_t + \boldsymbol{i}_t \odot tanh(\boldsymbol{W}_{x,c}\boldsymbol{x}_t + \boldsymbol{W}_{z,c}\boldsymbol{z}_{t-1})$
- $\boldsymbol{z}_t = tanh(\boldsymbol{c}_t) \odot \boldsymbol{o}_t$

# Improve generalization – Design the architecture

## Specialized architecture

- Convolutional : images
- Recurrent : text and audio signals

- **Convolutional** : images
- Recurrent : text and audio signals

**Empirical result** For a fixed number of weights : *the deeper the better* 

- **Convolutional** : images
- Recurrent : text and audio signals

#### Neural architecture search

*Optimisation problem* with **hyperparameters** : depth, width, connectivity, ...

### **Empirical result**

- **Convolutional** : images
- Recurrent : text and audio signals

### Neural architecture search

*Optimisation problem* with **hyperparameters** : depth, width, connectivity, ...

• Grid search

### **Empirical result**

- **Convolutional** : images
- Recurrent : text and audio signals

### Neural architecture search

*Optimisation problem* with **hyperparameters** : depth, width, connectivity, ...

- Grid search
- Evolutionary algorithm : recombination (joining parts of two networks) + mutation (adding/removing a layer or changing a parameter value)

#### **Empirical result**

- **Convolutional** : images
- Recurrent : text and audio signals

### Neural architecture search

*Optimisation problem* with **hyperparameters** : depth, width, connectivity, ...

- Grid search
- Evolutionary algorithm : recombination (joining parts of two networks) + mutation (adding/removing a layer or changing a parameter value)
- Hill climbing with mutations

#### **Empirical result**

- **Convolutional** : images
- Recurrent : text and audio signals

### Neural architecture search

*Optimisation problem* with **hyperparameters** : depth, width, connectivity, ...

- Grid search
- Evolutionary algorithm : recombination (joining parts of two networks) + mutation (adding/removing a layer or changing a parameter value)
- Hill climbing with mutations
- Reinforcement learning

#### **Empirical result**

- **Convolutional** : images
- Recurrent : text and audio signals

### Neural architecture search

*Optimisation problem* with **hyperparameters** : depth, width, connectivity, ...

- Grid search
- Evolutionary algorithm : recombination (joining parts of two networks) + mutation (adding/removing a layer or changing a parameter value)
- Hill climbing with mutations
- Reinforcement learning
- Bayesian optimization

#### **Empirical result**

- **Convolutional** : images
- Recurrent : text and audio signals

### Neural architecture search

*Optimisation problem* with **hyperparameters** : depth, width, connectivity, ...

- Grid search
- Evolutionary algorithm : recombination (joining parts of two networks) + mutation (adding/removing a layer or changing a parameter value)
- Hill climbing with mutations
- Reinforcement learning
- Bayesian optimization
- Gradient descent

#### **Empirical result**

- **Convolutional** : images
- Recurrent : text and audio signals

### Neural architecture search

*Optimisation problem* with **hyperparameters** : depth, width, connectivity, ...

- Grid search
- Evolutionary algorithm : recombination (joining parts of two networks) + mutation (adding/removing a layer or changing a parameter value)
- Hill climbing with mutations
- Reinforcement learning
- Bayesian optimization
- Gradient descent

#### **Empirical result**

For a fixed number of weights : *the deeper the better* 

## Train and evaluate

Reduce time of estimation : train on test set + evaluate on validation set

- **Convolutional** : images
- Recurrent : text and audio signals

### Neural architecture search

*Optimisation problem* with **hyperparameters** : depth, width, connectivity, ...

- Grid search
- Evolutionary algorithm : recombination (joining parts of two networks) + mutation (adding/removing a layer or changing a parameter value)
- Hill climbing with mutations
- Reinforcement learning
- Bayesian optimization
- Gradient descent

#### **Empirical result**

For a fixed number of weights : *the deeper the better* 

#### Train and evaluate

Reduce time of estimation : train on test set + evaluate on validation set

• Smaller training set

- **Convolutional** : images
- Recurrent : text and audio signals

### Neural architecture search

*Optimisation problem* with **hyperparameters** : depth, width, connectivity, ...

- Grid search
- Evolutionary algorithm : recombination (joining parts of two networks) + mutation (adding/removing a layer or changing a parameter value)
- Hill climbing with mutations
- Reinforcement learning
- Bayesian optimization
- Gradient descent

#### **Empirical result**

For a fixed number of weights : *the deeper the better* 

#### Train and evaluate

- Smaller training set
- Fewer batches + prediction of improvement

- **Convolutional** : images
- Recurrent : text and audio signals

### Neural architecture search

*Optimisation problem* with **hyperparameters** : depth, width, connectivity, ...

- Grid search
- Evolutionary algorithm : recombination (joining parts of two networks) + mutation (adding/removing a layer or changing a parameter value)
- Hill climbing with mutations
- Reinforcement learning
- Bayesian optimization
- Gradient descent

#### **Empirical result**

For a fixed number of weights : *the deeper the better* 

#### Train and evaluate

- Smaller training set
- Fewer batches + prediction of improvement
- Reduced version of the network

- **Convolutional** : images
- Recurrent : text and audio signals

### Neural architecture search

*Optimisation problem* with **hyperparameters** : depth, width, connectivity, ...

- Grid search
- Evolutionary algorithm : recombination (joining parts of two networks) + mutation (adding/removing a layer or changing a parameter value)
- Hill climbing with mutations
- Reinforcement learning
- Bayesian optimization
- Gradient descent

#### **Empirical result**

For a fixed number of weights : *the deeper the better* 

#### Train and evaluate

- Smaller training set
- Fewer batches + prediction of improvement
- Reduced version of the network
- Focus on subgraph

- **Convolutional** : images
- Recurrent : text and audio signals

### Neural architecture search

*Optimisation problem* with **hyperparameters** : depth, width, connectivity, ...

- Grid search
- Evolutionary algorithm : recombination (joining parts of two networks) + mutation (adding/removing a layer or changing a parameter value)
- Hill climbing with mutations
- Reinforcement learning
- Bayesian optimization
- Gradient descent

#### **Empirical result**

For a fixed number of weights : *the deeper the better* 

#### Train and evaluate

- Smaller training set
- Fewer batches + prediction of improvement
- Reduced version of the network
- Focus on subgraph
- Learn heuristic evaluation function

### Weight decay

Regularization with penalty  $\lambda \sum_{i,j} oldsymbol{W}_{i,j}^2$  , typically  $\lambda = 10^{-4}$ 

 $\hookrightarrow$  Encourage small weights (to stay in the linear part for sigmoid activation)

### Weight decay

Regularization with penalty  $\lambda \sum_{i,j} oldsymbol{W}_{i,j}^2$ , typically  $\lambda = 10^{-4}$ 

 $\hookrightarrow$  Encourage small weights

(to stay in the linear part for sigmoid activation)

### Dropout

At each step of training deactivate a random set of units

- Encourage the detection of more features
- Make it more robust to noise

### Vision

Deep convolutional networks (since 1990s)

ImageNet competition : classification 1200000 images in 1000 categories

In 2012, AlexNet : error rate <15.3% (2<sup>nd</sup> : 25%) (now, error rate <2%)

### Vision

Deep convolutional networks (since 1990s)

ImageNet competition : classification 1200000 images in 1000 categories

In 2012, AlexNet : error rate <15.3% (2<sup>nd</sup> : 25%) (now, error rate <2%)

## Natural Langage processing

Translation problems :

- $\bullet\,$  Two networks : from L1 to IR + from IR to L2
- One end-to-end network  $\leftarrow$  performs better

Speech recognition : representation of words with high-dimensional vectors ightarrow word embeddings

### Vision

Deep convolutional networks (since 1990s)

ImageNet competition : classification 1200000 images in 1000 categories

In 2012, AlexNet : error rate <15.3% (2<sup>nd</sup> : 25%) (now, error rate <2%)

## Natural Langage processing

Translation problems :

- $\bullet\,$  Two networks : from L1 to IR + from IR to L2
- One end-to-end network  $\leftarrow$  performs better

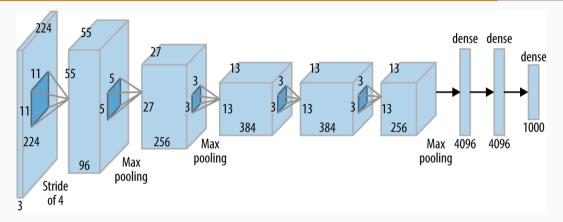
Speech recognition : representation of words with high-dimensional vectors ightarrow word embeddings

### **Reinforcement** learning

Optimise the sum of *future rewards* : learn a value function, Q-function, policy,  $\ldots \rightarrow$  *deep reinforcement learning* 

DeepMind : DQN an Atari-playing agent (2013) and AlphaGo (2014)

## AlexNet architecture



Architecture of Alexnet. From left to right (input to output) five convolutional layers with Max Pooling after layers 1,2, and 5, followed by a three layer fully connected classifier (layers 6-8). The number of neurons in the output layer is equal to the designed number of output classes.

• Neural Networks = computation graph composed of parameterized linear-threshold units

- Neural Networks = computation graph composed of parameterized linear-threshold units
- A neural network can represent complex nonlinear functions

- Neural Networks = computation graph composed of parameterized linear-threshold units
- A neural network can represent complex nonlinear functions
- Backpropagation = gradient descent for neural networks

- Neural Networks = computation graph composed of parameterized linear-threshold units
- A neural network can represent complex nonlinear functions
- Backpropagation = gradient descent for neural networks
- Deep learning is suited for visual object recognition, speech recognition, natural language processing and reinforcement learning

- Neural Networks = computation graph composed of parameterized linear-threshold units
- A neural network can represent complex nonlinear functions
- **Backpropagation** = gradient descent for neural networks
- Deep learning is suited for visual object recognition, speech recognition, natural language processing and reinforcement learning
- **Convolutional** networks  $\rightarrow$  data with grid topology (e.g. images)

- Neural Networks = computation graph composed of parameterized linear-threshold units
- A neural network can represent complex nonlinear functions
- **Backpropagation** = gradient descent for neural networks
- Deep learning is suited for visual object recognition, speech recognition, natural language processing and reinforcement learning
- **Convolutional** networks  $\rightarrow$  data with grid topology (e.g. images)
- Recurrent networks  $\rightarrow$  sequence data (e.g. language modeling and machine translation)

- Neural Networks = computation graph composed of parameterized linear-threshold units
- A neural network can represent complex nonlinear functions
- **Backpropagation** = gradient descent for neural networks
- Deep learning is suited for visual object recognition, speech recognition, natural language processing and reinforcement learning
- **Convolutional** networks  $\rightarrow$  data with grid topology (e.g. images)
- Recurrent networks  $\rightarrow$  sequence data (e.g. language modeling and machine translation)

To go further ...

• Transfer learning : re-train a pretrained network for a specific task

- Neural Networks = computation graph composed of parameterized linear-threshold units
- A neural network can represent complex nonlinear functions
- **Backpropagation** = gradient descent for neural networks
- Deep learning is suited for visual object recognition, speech recognition, natural language processing and reinforcement learning
- **Convolutional** networks  $\rightarrow$  data with grid topology (e.g. images)
- Recurrent networks  $\rightarrow$  sequence data (e.g. language modeling and machine translation)

To go further ...

- Transfer learning : re-train a pretrained network for a specific task
- Generative Adversarial Networks : a generator network + a discriminator network

Model Selection and Optimisation

Learn several hypothesis  $h_1, h_2, \ldots, h_K$  and use a combination  $h^* = \{h_1, h_2, \ldots, h_K\}$ 

- reduce bias of each base model by combining
- reduce variance of learning by voting

Learn several hypothesis  $h_1, h_2, \ldots, h_K$  and use a combination  $h^* = \{h_1, h_2, \ldots, h_K\}$ 

- reduce bias of each base model by combining
- reduce variance of learning by voting

**Bagging**

$$h^*(\boldsymbol{x}) = \frac{1}{K} \sum_{i=1}^{K} h_i(\boldsymbol{x})$$
: voting in the same model class

Example : random forests

Learn several hypothesis  $h_1, h_2, \ldots, h_K$  and use a combination  $h^* = \{h_1, h_2, \ldots, h_K\}$ 

- reduce bias of each base model by combining
- reduce variance of learning by voting

### Bagging

$$h^*(oldsymbol{x}) = rac{1}{\kappa} \sum_{i=1}^\kappa h_i(oldsymbol{x}) 
ight|$$
 : voting in the same model class

Example : random forests

### Stacking

Train a new hypothesis on validation set augmented with the predictions of  $h_1, h_2, \ldots, h_K$ 

Learn several hypothesis  $h_1, h_2, \ldots, h_K$  and use a combination  $h^* = \{h_1, h_2, \ldots, h_K\}$ 

- reduce bias of each base model by combining
- reduce variance of learning by voting

### Bagging

$$h^*(oldsymbol{x}) = rac{1}{\kappa} \sum_{i=1}^\kappa h_i(oldsymbol{x})$$
 : voting in the same model class

Example : random forests

### Stacking

Train a new hypothesis on validation set augmented with the predictions of  $h_1, h_2, \ldots, h_K$ 

• learn a weight for each hypothesis  $h_i$  : trust

Learn several hypothesis  $h_1, h_2, \ldots, h_K$  and use a combination  $h^* = \{h_1, h_2, \ldots, h_K\}$ 

- reduce bias of each base model by combining
- reduce variance of learning by voting

### Bagging

$$h^*(oldsymbol{x}) = rac{1}{\kappa} \sum_{i=1}^\kappa h_i(oldsymbol{x})$$
 : voting in the same model class

Example : random forests

### Stacking

Train a new hypothesis on validation set augmented with the predictions of  $h_1, h_2, \ldots, h_K$ 

- learn a weight for each hypothesis  $h_i$  : trust
- we can add metadata (e.g. time to compute) and stack several layers

Learn several hypothesis  $h_1, h_2, \ldots, h_K$  and use a combination  $h^* = \{h_1, h_2, \ldots, h_K\}$ 

- reduce bias of each base model by combining
- reduce variance of learning by voting

### Bagging

$$h^*(oldsymbol{x}) = rac{1}{K} \sum_{i=1}^K h_i(oldsymbol{x}) 
ight|$$
 : voting in the same model class

Example : random forests

#### Stacking

Train a new hypothesis on validation set augmented with the predictions of  $h_1, h_2, \ldots, h_K$ 

- learn a weight for each hypothesis  $h_i$ : trust
- we can add metadata (e.g. time to compute) and stack several layers

### Boosting

 Boost incorrectly classified training example by increasing its weight (number of occurences), iterate after learning each h<sub>i</sub>

2. Weighted voting : 
$$h^*(\mathbf{x}) = \sum_{i=1}^{K} z_i h_i(\mathbf{x})$$

Learn several hypothesis  $h_1, h_2, \ldots, h_K$  and use a combination  $h^* = \{h_1, h_2, \ldots, h_K\}$ 

- reduce bias of each base model by combining
- reduce variance of learning by voting

### Bagging

$$h^*(oldsymbol{x}) = rac{1}{K} \sum_{i=1}^K h_i(oldsymbol{x}) 
ight|$$
 : voting in the same model class

Example : random forests

### Stacking

Train a new hypothesis on validation set augmented with the predictions of  $h_1, h_2, \ldots, h_K$ 

- learn a weight for each hypothesis  $h_i$  : trust
- we can add metadata (e.g. time to compute) and stack several layers

## Boosting

 Boost incorrectly classified training example by increasing its weight (number of occurences), iterate after learning each h<sub>i</sub>

2. Weighted voting : 
$$h^*(\mathbf{x}) = \sum_{i=1}^{K} z_i h_i(\mathbf{x})$$

### **Gradient boosting** Boosting with *gradient descent* to find the weight on training examples 38/42

• Random Forests : lot of categorical features and many irrelevant

- Random Forests : lot of categorical features and many irrelevant
- Non-parametric models : lot of data and no prior knowledge → resulting hypothesis are expensive to compute

- Random Forests : lot of categorical features and many irrelevant
- Non-parametric models : lot of data and no prior knowledge  $\rightarrow$  resulting hypothesis are expensive to compute
- Logistic Regression performs similarly than SVM

- Random Forests : lot of categorical features and many irrelevant
- Non-parametric models : lot of data and no prior knowledge  $\rightarrow$  resulting hypothesis are expensive to compute
- Logistic Regression performs similarly than SVM
- $\ensuremath{\mathsf{SVM}}$  : is better for not too large dataset with high dimension

- Random Forests : lot of categorical features and many irrelevant
- Non-parametric models : lot of data and no prior knowledge  $\rightarrow$  resulting hypothesis are expensive to compute
- Logistic Regression performs similarly than SVM
- $\ensuremath{\mathsf{SVM}}$  : is better for not too large dataset with high dimension
- Deep Neural Network : for complex pattern recognition (e.g. image or speech processing)

• Not enough data  $\rightarrow$  data augmentation (example : image cropping/rotating/...)

- Not enough data  $\rightarrow$  data augmentation (example : image cropping/rotating/...)
- Unbalanced classes in data (example : unbalanced representation of negative vs. positive examples)  $\rightarrow$  undersample or oversample

- Not enough data  $\rightarrow$  data augmentation (example : image cropping/rotating/...)
- Unbalanced classes in data (example : unbalanced representation of negative vs. positive examples)  $\rightarrow$  undersample or oversample
- **Outliers** : points far from the majority  $\rightarrow$  some model classes are less susceptible : decision trees

# Summary

- Supervised learning is learning on labelled datasets
- Regression is learning a function with infinite output values
- Classification is learning a function with finite output values
- Linear/Logistic regression is a simple yet powerful model class for supervised learning
- **Deep Neural Networks** are computation graphs composed of units made of a non-linear and a linear function
- **Deep learning** is well suited for visual object recognition, speech recognition, natural language processing and reinforcement learning

- Artificial Intelligence : A Modern Approach, Stuart Russell and Peter Norvig
- Lecture of Didier Lime (2022-2023)
- Lecture of Kilian Weinberger : https://courses.cis.cornell.edu/cs4780/2017sp/