Artificial Intelligence

Supervised Learning

Rémi Parrot remi.parrot@ec-nantes.fr

11 mars 2024

"An agent is **learning** if it **improves** its **performance** after making **observations** about the world.", *S. Russell and P. Norvig*, Artificial Intelligence – A Modern Approach

"An agent is **learning** if it **improves** its **performance** after making **observations** about the world.", *S. Russell and P. Norvig*, Artificial Intelligence – A Modern Approach

Induction specific observations \rightarrow general rules

 \neq

Deduction

general axioms \rightarrow specific propositions

(guaranteed to be correct)

"An agent is **learning** if it **improves** its **performance** after making **observations** about the world.", *S. Russell and P. Norvig*, Artificial Intelligence – A Modern Approach

Induction specific observations \rightarrow general rules

 \neq

 $\ensuremath{\text{Example}}$ the sun rose every morning in the past \rightarrow the sun will rise tomorrow

Deduction

general axioms \rightarrow specific propositions

(guaranteed to be correct)

 $\begin{array}{l} \textbf{Example} \\ \text{all squirrels are mortal and Scrat is a} \\ \text{squirrel} \rightarrow \text{Scrat is mortal} \end{array}$

Parameters

- *component* to be improved
- $\bullet \ \textit{prior knowledge} \rightarrow \textit{model}$
- data and feedback

Parameters

- *component* to be improved
- $\bullet \ \textit{prior knowledge} \rightarrow \textit{model}$
- data and feedback

Components

- A direct mapping from conditions on the current state to actions
- A means to infer relevant properties of the world from the percept sequence
- Information about the way the world evolves and about the results of possible actions
- Utility information indicating the desirability of world states
- ...

 $\begin{array}{l} \textbf{Data} \\ (x_1,y_1), (x_2,y_2), \dots \in X \times Y \end{array}$

- Classification : Y is finite (e.g. {sunny, cloudy, rainy} or {true, false})
- **Regression** : Y is *infinite* (e.g. \mathbb{N})

Data $(x_1, y_1), (x_2, y_2), \dots \in X \times Y$

- Classification : Y is finite (e.g. {sunny, cloudy, rainy} or {true, false})
- **Regression** : Y is *infinite* (e.g. \mathbb{N})

Feedback

- Supervised learning : the agent observes input-output pairs (x, y) and learn y = f(x)
- Unsupervised learning : the agent learns *pattern* from *inputs*
- **Reinforcement learning** : the agent learns from a serie of reinforcements : *rewards* and *punishments*

Supervised Learning

Linear Regression and Classification

Deep Learning

Model Selection and Optimisation

Summary

Supervised Learning

Data set $(x_1, y_1), (x_2, y_2), \dots (x_N, y_N) \in X \times Y$

Data set $(x_1, y_1), (x_2, y_2), \dots (x_N, y_N) \in X \times Y$

Function to learn $y = f(x) \rightarrow \text{hypothesis } h \sim f$ Data set $(x_1, y_1), (x_2, y_2), \dots (x_N, y_N) \in X \times Y$

Function to learn $y = f(x) \rightarrow$ hypothesis $h \sim f$

Stationarity assumption

- $P(E_j) = P(E_{j+1}) = P(E_{j+2}) = \dots$: each example has the same prior probability distribution
- $P(E_j) = P(E_j | E_{j-1}, E_{j-2}, ...)$: each example is independent from previous examples

 \hookrightarrow independent and identically distributed

Model

• hypothesis space ${\cal H}=$

model class

Model

- hypothesis space $\mathcal{H} =$ model class
- hypothesis $h \in \mathcal{H} =$ model

Model

- hypothesis space $\mathcal{H} =$ model class
- hypothesis $h \in \mathcal{H} =$ model
- hyperparameters : parameters of the model class (e.g : degree for polynomial)

Train and Evaluate *Learn* with part of the data and *evaluate* with the rest :

Model

- hypothesis space $\mathcal{H} =$ model class
- hypothesis $h \in \mathcal{H} =$ model
- hyperparameters :

parameters of the model class (e.g : degree for polynomial)

Learn with part of the data and evaluate with the rest :

Model

- hypothesis space $\mathcal{H} =$ model class
- hypothesis $h \in \mathcal{H} =$ model
- hyperparameters :

parameters of the model class (e.g : degree for polynomial) • **training set** : to train candidate models (≠ model classes and ≠ hyperparameters)

Learn with part of the data and evaluate with the rest :

Model

- hypothesis space $\mathcal{H} =$ model class
- hypothesis $h \in \mathcal{H} =$ model
- hyperparameters : parameters of the model class (e.g : degree for polynomial)

- **training set** : to train candidate models (≠ model classes and ≠ hyperparameters)
- validation set : to evaluate candidate models and select the best

Learn with part of the data and evaluate with the rest :

Model

- hypothesis space $\mathcal{H} =$ model class
- hypothesis $h \in \mathcal{H} =$ model
- hyperparameters : parameters of the model class (e.g : degree for polynomial)

- **training set** : to train candidate models (≠ model classes and ≠ hyperparameters)
- validation set : to evaluate candidate models and select the best
- test set : to evaluate the selected model

Learn with part of the data and evaluate with the rest :

Model

- hypothesis space $\mathcal{H} =$ model class
- hypothesis $h \in \mathcal{H} =$ model
- hyperparameters : parameters of the model class (e.g : degree for polynomial)

- training set : to train candidate models (≠ model classes and ≠ hyperparameters)
- validation set : to evaluate candidate models and select the best
- test set : to evaluate the selected model

k-fold cross-validation

- split the training set into k subsets
- iterate the three steps for all $i \in [1, k]$:
 - take subset *i* out
 - train with k-1 joint subsets
 - validate with the subset *i*

Loss function y = f(x) and $\hat{y} = h(x)$

Loss function y = f(x) and $\hat{y} = h(x)$

 $L(x, y, \hat{y}) = \text{Utility}(\text{using } y \text{ given } x) - \text{Utility}(\text{using } \hat{y} \text{ given } x)$

Loss function y = f(x) and $\hat{y} = h(x)$

 $L(x, y, \hat{y}) = \text{Utility}(\text{using } y \text{ given } x) - \text{Utility}(\text{using } \hat{y} \text{ given } x) \rightarrow \text{simplification} : L(y, \hat{y})$

Loss function y = f(x) and $\hat{y} = h(x)$

 $L(x, y, \hat{y}) = \text{Utility}(\text{using } y \text{ given } x) - \text{Utility}(\text{using } \hat{y} \text{ given } x) \rightarrow \text{simplification} : L(y, \hat{y})$ example : For a spam filter, L(spam, nospam) = 1 and L(nospam, spam) = 10

Loss function y = f(x) and $\hat{y} = h(x)$ $L(x, y, \hat{y}) = \text{Utility}(\text{using } y \text{ given } x) - \text{Utility}(\text{using } \hat{y} \text{ given } x) \rightarrow \text{simplification} : L(y, \hat{y})$ example : For a spam filter, L(spam, nospam) = 1 and L(nospam, spam) = 10

Usual loss functions

• Absolute-value loss : $L_1(y, \hat{y}) = |y - \hat{y}|$

Loss function y = f(x) and $\hat{y} = h(x)$ $L(x, y, \hat{y}) = \text{Utility}(\text{using } y \text{ given } x) - \text{Utility}(\text{using } \hat{y} \text{ given } x) \rightarrow \text{simplification} : L(y, \hat{y})$ example : For a spam filter, L(spam, nospam) = 1 and L(nospam, spam) = 10

Usual loss functions

- Absolute-value loss : $L_1(y, \hat{y}) = |y \hat{y}|$
- Squared-error loss : $L_2(y, \hat{y}) = (y \hat{y})^2$

Loss function y = f(x) and $\hat{y} = h(x)$ $L(x, y, \hat{y}) = \text{Utility}(\text{using } y \text{ given } x) - \text{Utility}(\text{using } \hat{y} \text{ given } x) \rightarrow \text{simplification} : L(y, \hat{y})$ example : For a spam filter, L(spam, nospam) = 1 and L(nospam, spam) = 10

Usual loss functions

• Absolute-value loss : $L_1(y, \hat{y}) = |y - \hat{y}|$

• Squared-error loss :
$$L_2(y, \hat{y}) = (y - \hat{y})^2$$

•
$$0/1$$
 loss : $L_{0/1}(y, \hat{y}) = \begin{cases} 0 & \text{if } y = \hat{y} \\ 1 & \text{else} \end{cases}$

Loss function y = f(x) and $\hat{y} = h(x)$ $L(x, y, \hat{y}) = \text{Utility}(\text{using } y \text{ given } x) - \text{Utility}(\text{using } \hat{y} \text{ given } x) \rightarrow \text{simplification} : L(y, \hat{y})$ example : For a spam filter, L(spam, nospam) = 1 and L(nospam, spam) = 10

Usual loss functions

• Absolute-value loss : $L_1(y, \hat{y}) = |y - \hat{y}|$

• Squared-error loss :
$$L_2(y, \hat{y}) = (y - \hat{y})^2$$

•
$$0/1$$
 loss : $L_{0/1}(y, \hat{y}) = \begin{cases} 0 & \text{if } y = \hat{y} \\ 1 & \text{else} \end{cases}$

Generalization loss
$$GenLoss_L(h) = \sum_{(x,y)} L(y, h(x))P(x, y)$$

Loss function y = f(x) and $\hat{y} = h(x)$ $L(x, y, \hat{y}) = \text{Utility}(\text{using } y \text{ given } x) - \text{Utility}(\text{using } \hat{y} \text{ given } x) \rightarrow \text{simplification} : L(y, \hat{y})$ example : For a spam filter, L(spam, nospam) = 1 and L(nospam, spam) = 10

Usual loss functions

• Absolute-value loss :
$$L_1(y, \hat{y}) = |y - \hat{y}|$$

• Squared-error loss :
$$L_2(y, \hat{y}) = (y - \hat{y})^2$$

•
$$0/1$$
 loss : $L_{0/1}(y, \hat{y}) = \begin{cases} 0 & \text{if } y = \hat{y} \\ 1 & \text{else} \end{cases}$

Empirical loss

$$EmpLoss_{L,E}(h) = \sum_{(x,y)\in E} L(y, h(x)) \frac{1}{N}$$
(with $|E| = N$)

Generalization loss

$$GenLoss_L(h) = \sum_{(x,y)} L(y, h(x))P(x, y)$$

Loss function y = f(x) and $\hat{y} = h(x)$ $L(x, y, \hat{y}) = \text{Utility}(\text{using } y \text{ given } x) - \text{Utility}(\text{using } \hat{y} \text{ given } x) \rightarrow \text{simplification} : L(y, \hat{y})$ example : For a spam filter, L(spam, nospam) = 1 and L(nospam, spam) = 10

Usual loss functions

• Absolute-value loss : $L_1(y, \hat{y}) = |y - \hat{y}|$

• Squared-error loss :
$$L_2(y, \hat{y}) = (y - \hat{y})^2$$

•
$$0/1$$
 loss : $L_{0/1}(y, \hat{y}) = \begin{cases} 0 & \text{if } y = \hat{y} \\ 1 & \text{else} \end{cases}$

Empirical loss

$$EmpLoss_{L,E}(h) = \sum_{(x,y)\in E} L(y, h(x)) \frac{1}{N}$$
(with $|E| = N$)

Regularization Ockham's razor dictates to prefer simplicity

Generalization loss $GenLoss_L(h) = \sum_{(x,y)} L(y, h(x))P(x, y)$

Loss function y = f(x) and $\hat{y} = h(x)$ $L(x, y, \hat{y}) = \text{Utility}(\text{using } y \text{ given } x) - \text{Utility}(\text{using } \hat{y} \text{ given } x) \rightarrow \text{simplification} : L(y, \hat{y})$ example : For a spam filter, L(spam, nospam) = 1 and L(nospam, spam) = 10

Usual loss functions

• Absolute-value loss : $L_1(y, \hat{y}) = |y - \hat{y}|$

• Squared-error loss :
$$L_2(y, \hat{y}) = (y - \hat{y})^2$$

•
$$0/1$$
 loss : $L_{0/1}(y, \hat{y}) = \begin{cases} 0 & \text{if } y = \hat{y} \\ 1 & \text{else} \end{cases}$

Generalization loss

$$GenLoss_L(h) = \sum_{(x,y)} L(y, h(x))P(x, y)$$

Empirical loss

$$EmpLoss_{L,E}(h) = \sum_{(x,y)\in E} L(y, h(x)) \frac{1}{N}$$
(with $|E| = N$)

Regularization Ockham's razor dictates to prefer simplicity

 $Cost(h) = EmpLoss(h) + \lambda Complexity(h)$

$$\hat{h}^* = \underset{h \in \mathcal{H}}{\operatorname{argminCost}(h)}$$
 7/42

Realizability/Intractability

• Realizable : $f \in \mathcal{H}$

Realizability/Intractability

- **Realizable** : $f \in \mathcal{H}$
- **Computationally tractable** : there exists algorithm to explore \mathcal{H} with reasonable amount of time/resources.

Realizability/Intractability

- **Realizable** : $f \in \mathcal{H}$
- **Computationally tractable** : there exists algorithm to explore \mathcal{H} with reasonable amount of time/resources.

Dataset f may be nondeterministic or **noisy** : different values of f(x) for a same x

Realizability/Intractability

- **Realizable** : $f \in \mathcal{H}$
- **Computationally tractable** : there exists algorithm to explore \mathcal{H} with reasonable amount of time/resources.

Dataset f may be nondeterministic or **noisy** : different values of f(x) for a same x

Underfitting/Overfitting

 Overfitting : when a function pays too much attention to the particular data it is trained on → doesn't generalize well.

Learning failure

Realizability/Intractability

- **Realizable** : $f \in \mathcal{H}$
- **Computationally tractable** : there exists algorithm to explore \mathcal{H} with reasonable amount of time/resources.

Dataset f may be nondeterministic or **noisy** : different values of f(x) for a same x

Underfitting/Overfitting

- Overfitting : when a function pays too much attention to the particular data it is trained on → doesn't generalize well.
- **Underfitting** : when a function fails to find a pattern in the data.

Learning failure

Realizability/Intractability

- **Realizable** : $f \in \mathcal{H}$
- **Computationally tractable** : there exists algorithm to explore \mathcal{H} with reasonable amount of time/resources.

Dataset

f may be nondeterministic or **noisy** : different values of f(x) for a same x

Underfitting/Overfitting

- Overfitting : when a function pays too much attention to the particular data it is trained on → doesn't generalize well.
- **Underfitting** : when a function fails to find a pattern in the data.

Learning failure

Realizability/Intractability

- **Realizable** : $f \in \mathcal{H}$
- **Computationally tractable** : there exists algorithm to explore \mathcal{H} with reasonable amount of time/resources.

Dataset

f may be nondeterministic or **noisy** : different values of f(x) for a same x

Underfitting/Overfitting

- Overfitting : when a function pays too much attention to the particular data it is trained on → doesn't generalize well.
- **Underfitting** : when a function fails to find a pattern in the data.

- complex low-bias hypotheses that fit the training data well
- simple low-variance hypotheses that generalize better

8/42

• Decision trees

- Decision trees
- Linear regression

- Decision trees
- Linear regression
- Linear/Logistic classification

- Decision trees
- Linear regression
- Linear/Logistic classification
- Support Vector Machines

- Decision trees
- Linear regression
- Linear/Logistic classification
- Support Vector Machines
- Neural Networks

Linear Regression and Classification

Sample set $\{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\} \subseteq \mathbb{R} \times \mathbb{R}$

Hypothesis $h_{\vec{w}}(x) = w_0 + w_1 x$ with $\vec{w} = (w_0, w_1)$

Sample set $\{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\} \subseteq \mathbb{R} \times \mathbb{R}$

Hypothesis $h_{\vec{w}}(x) = w_0 + w_1 x$ with $\vec{w} = (w_0, w_1)$

Minimize loss Normally distributed noise $\rightarrow L_2$ (Gauss)

$$Loss(h_{\vec{w}}) = \sum_{j=1}^{N} L_2(y_j, h_{\vec{w}}(x_j)) = \sum_{j=1}^{N} (y_j - (w_0 + w_1 x_j))^2$$

Minimize $L(\vec{w}) = Loss(h_{\vec{w}})$

Sample set $\{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\} \subseteq \mathbb{R} \times \mathbb{R}$

Hypothesis $h_{\vec{w}}(x) = w_0 + w_1 x$ with $\vec{w} = (w_0, w_1)$

Minimize loss Normally distributed noise $\rightarrow L_2$ (Gauss)

$$Loss(h_{\vec{w}}) = \sum_{j=1}^{N} L_2(y_j, h_{\vec{w}}(x_j)) = \sum_{j=1}^{N} (y_j - (w_0 + w_1 x_j))^2$$

Minimize $L(\vec{w}) = Loss(h_{\vec{w}})$

Analytic solution

Show that the minimum of $L(\vec{w})$ is obtained for : $w_1 = \frac{(\sum x_j)(\sum y_j) - N(\sum x_j y_j)}{(\sum x_j)^2 - N(\sum x_j^2)}$ and $w_0 = \frac{(\sum y_j) - w_1(\sum x_j)}{N}$

Gradient descent

 $\boxed{\begin{array}{l} \textbf{Algorithm} \\ w_i \leftarrow w_i - \alpha \frac{\partial L(\vec{w})}{\partial w_i} \end{array}} \text{ with } \alpha \text{ the } \textit{learning rate} \end{array}}$

Sample set $\{(\vec{x_1}, y_1), (\vec{x_2}, y_2), \dots, (\vec{x_N}, y_N)\} \subseteq \mathbb{R}^d \times \mathbb{R}$

Sample set $\{(\vec{x_1}, y_1), (\vec{x_2}, y_2), \dots, (\vec{x_N}, y_N)\} \subseteq \mathbb{R}^d \times \mathbb{R}$

Hypothesis

$$h_{ec w}(ec x_j) = ec w ec x_j = \sum\limits_{i=0}^d w_i x_{ji}$$
 with :

•
$$\vec{w} = (w_0, w_1, \dots, w_d) \in \mathbb{R}^{d+1}$$

•
$$\vec{x_j} = (x_{j1}, x_{j2}, \dots, x_{jd}) \in \mathbb{R}^d$$

•
$$x_{j0} = 1$$

 $\begin{array}{l} \textbf{Sample set} \\ \{(\vec{x_1}, y_1), (\vec{x_2}, y_2), \dots, (\vec{x_N}, y_N)\} \subseteq \mathbb{R}^d \times \mathbb{R} \end{array}$

Hypothesis

$$h_{ec w}(ec x_j) = ec w ec x_j = \sum\limits_{i=0}^d w_i x_{ji}$$
 with :

•
$$\vec{w} = (w_0, w_1, \dots, w_d) \in \mathbb{R}^{d+1}$$

•
$$\vec{x_j} = (x_{j1}, x_{j2}, \dots, x_{jd}) \in \mathbb{R}^d$$

•
$$x_{j0} = 1$$

Gradient descent

$$w_i \leftarrow w_i - lpha \sum_{j=1}^N (y_j - h_{\vec{w}}(\vec{x_j})) x_{ji}$$

Sample set $\{(\vec{x_1}, y_1), (\vec{x_2}, y_2), \dots, (\vec{x_N}, y_N)\} \subseteq \mathbb{R}^d \times \mathbb{R}$

Hypothesis

$$h_{ec w}(ec x_j) = ec w ec x_j = \sum\limits_{i=0}^d w_i x_{ji}$$
 with :

•
$$\vec{w} = (w_0, w_1, \dots, w_d) \in \mathbb{R}^{d+1}$$

•
$$\vec{x_j} = (x_{j1}, x_{j2}, \dots, x_{jd}) \in \mathbb{R}^d$$

•
$$x_{j0} = 1$$

Gradient descent

$$w_i \leftarrow w_i - lpha \sum_{j=1}^N (y_j - h_{\vec{w}}(\vec{x_j})) x_{ji}$$

Analytic solution **X** : matrix of inputs (each row is an $\vec{x_j}$), **y** : vector of outputs (each row is a y_j) $L(\boldsymbol{w}) = \|\boldsymbol{X}.\boldsymbol{w} - \boldsymbol{y}\|^2$ $\nabla_{\boldsymbol{w}} L(\boldsymbol{w}) = 2\boldsymbol{X}^{\top}.(\boldsymbol{X}.\boldsymbol{w} - \boldsymbol{y}) = \boldsymbol{0}$ $\boldsymbol{w}^* = (\boldsymbol{X}^{\top}.\boldsymbol{X})^{-1}.\boldsymbol{X}^{\top}.\boldsymbol{y}$: normal equation

Batch gradient descent

 $w_i \leftarrow w_i - \alpha \sum_{j=1}^{N} (y_j - h_{\vec{w}}(\vec{x_j})) x_{ji}$ (also called *deterministic gradient descent*)

Batch gradient descent

$$w_i \leftarrow w_i - \alpha \sum_{j=1}^{N} (y_j - h_{\vec{w}}(\vec{x_j})) x_{ji}$$
 (also called *deterministic gradient descent*)

Stochastic gradient descent (SGD)

1. select and remove a *minibatch* of m out of N training examples (randomly)

2. compute a step
$$w_i \leftarrow w_i - \alpha \sum_{j=1}^m (y_j - h_{\vec{w}}(\vec{x_j})) x_{ji}$$

3. iterate until no more training examples

Batch gradient descent

$$w_i \leftarrow w_i - \alpha \sum_{j=1}^{N} (y_j - h_{\vec{w}}(\vec{x_j})) x_{ji}$$
 (also called *deterministic gradient descent*)

Stochastic gradient descent (SGD)

1. select and remove a *minibatch* of m out of N training examples (randomly)

2. compute a step
$$w_i \leftarrow w_i - \alpha \sum_{j=1}^m (y_j - h_{\vec{w}}(\vec{x_j})) x_{ji}$$

3. iterate until no more training examples

Epoch

A step that covers all N training examples

Batch gradient descent

$$w_i \leftarrow w_i - \alpha \sum_{j=1}^{N} (y_j - h_{\vec{w}}(\vec{x_j})) x_{ji}$$
 (also called *deterministic gradient descent*)

Stochastic gradient descent (SGD)

1. select and remove a *minibatch* of m out of N training examples (randomly)

2. compute a step
$$w_i \leftarrow w_i - \alpha \sum_{j=1}^m (y_j - h_{\vec{w}}(\vec{x_j})) x_{ji}$$

3. iterate until no more training examples

Epoch

A step that covers all N training examples

Complete algorithm

Iterate E epochs until convergence.

Overfitting In high-dimensional spaces, some irrelevant dimension might appear to be useful

Overfitting

In high-dimensional spaces, some irrelevant dimension might appear to be useful

Regularization $Cost(h) = EmpLoss(h) + \lambda Complexity(h)$

Overfitting

In high-dimensional spaces, some irrelevant dimension might appear to be useful

Regularization $Cost(h) = EmpLoss(h) + \lambda Complexity(h)$

For linear functions

Complexity
$$(h_{\vec{w}}) = L_q(\vec{w}) = \sum_{i=0}^d |w_i|^q$$

Usually, we use $q = 1 : L_1$ regularization \rightarrow produces *sparse model* (remove attributes)

Linear classification

Sample set $\{(\vec{x_1}, y_1), (\vec{x_2}, y_2), \dots, (\vec{x_N}, y_N)\} \subseteq \mathbb{R}^d \times \{0, 1\}$

Linear classification

Sample set $\{(\vec{x_1}, y_1), (\vec{x_2}, y_2), \dots, (\vec{x_N}, y_N)\} \subseteq \mathbb{R}^d \times \{0, 1\}$

Hypothesis The *decision boundary* is a linear separator.

$$Threshold(z) = \begin{cases} 0 \text{ if } z < 0\\ 1 \text{ else} \end{cases}$$

Hypothesis
$$h_{\vec{w}}(\vec{x_i}) = Threshold(\vec{w}.\vec{x_i})$$
 with $\vec{w} \in \mathbb{R}^{d+1}$

$$Threshold(z) = \begin{cases} 0 \text{ if } z < 0 \\ 1 \text{ else} \end{cases}$$

Hypothesis $h_{\vec{w}}(\vec{x_i}) = Threshold(\vec{w}.\vec{x_i})$ with $\vec{w} \in \mathbb{R}^{d+1}$

Perceptron learning rule

$$w_i \leftarrow w_i + lpha(y_j - h_{\vec{w}}(\vec{x_j}))x_{ji}$$

$$Threshold(z) = \begin{cases} 0 \text{ if } z < 0 \\ 1 \text{ else} \end{cases}$$

Hypothesis

 $h_{\vec{w}}(\vec{x_j}) = Threshold(\vec{w}.\vec{x_j})$ with $\vec{w} \in \mathbb{R}^{d+1}$

Perceptron learning rule

 $w_i \leftarrow w_i + lpha(y_j - h_{ec w}(ec x_j)) x_{ji}$

Issue

May not converge if data is not clearly separable (without noise)

$$Threshold(z) = \begin{cases} 0 \text{ if } z < 0 \\ 1 \text{ else} \end{cases}$$

$$Threshold(z) = \begin{cases} 0 \text{ if } z < 0 \\ 1 \text{ else} \end{cases}$$

Hypothesis

 $h_{\vec{w}}(\vec{x_j}) = Threshold(\vec{w}.\vec{x_j})$ with $\vec{w} \in \mathbb{R}^{d+1}$

Perceptron learning rule

 $w_i \leftarrow w_i + \alpha(y_j - h_{\vec{w}}(\vec{x_j}))x_{ji}$

Issue

May not converge if data is not clearly separable (without noise)

Dynamic learning rate

 $\alpha(t) = \frac{c}{c+t}$ (decrease with time elapsing)

with c a fairly large constant

$$Threshold(z) = \begin{cases} 0 \text{ if } z < 0\\ 1 \text{ else} \end{cases}$$

Hypothesis

 $h_{ec w}(ec x_j) = Threshold(ec w.ec x_j)$ with $ec w \in \mathbb{R}^{d+1}$

Perceptron learning rule

 $w_i \leftarrow w_i + lpha(y_j - h_{\vec{w}}(\vec{x_j}))x_{ji}$

Issue

May not converge if data is not clearly separable (without noise)

Dynamic learning rate $\alpha(t) = \frac{c}{c+t}$ (decrease with time elapsing)

with c a fairly large constant

Technically, we require that : $\sum\limits_{t=1}^\infty lpha(t) = \infty$ and $\sum\limits_{t=1}^\infty lpha(t)^2 < \infty$

Logistic linear classifier

 μ : location parameter (here $\mu = 0$) s : scale parameter (here s = 1)

 μ : location parameter (here $\mu = 0$) s : scale parameter (here s = 1) Hypothesis $h_{\vec{w}}(\vec{x_j}) = Logistic(\vec{w}.\vec{x_j})$ with $\vec{w} \in \mathbb{R}^{d+1}$

 μ : location parameter (here $\mu = 0$) s : scale parameter (here s = 1) **Hypothesis** $h_{\vec{w}}(\vec{x_i}) = Logistic(\vec{w}.\vec{x_i})$ with $\vec{w} \in \mathbb{R}^{d+1}$

Why though? Logistic function is differentiable in 0!

 μ : location parameter (here $\mu = 0$) s : scale parameter (here s = 1) **Hypothesis** $h_{\vec{w}}(\vec{x_i}) = Logistic(\vec{w}.\vec{x_i})$ with $\vec{w} \in \mathbb{R}^{d+1}$

Why though? Logistic function is differentiable in 0!

Gradient descent

Find the logistic learning rule from the general formula of gradient descent : $w_i \leftarrow w_i + \alpha \frac{\partial L(\vec{w})}{\partial w_i}$ (for a single example (\vec{x}, y)).

 μ : location parameter (here $\mu = 0$) s : scale parameter (here s = 1) **Hypothesis** $h_{\vec{w}}(\vec{x_j}) = Logistic(\vec{w}.\vec{x_j})$ with $\vec{w} \in \mathbb{R}^{d+1}$

Why though ? Logistic function is differentiable in 0!

Gradient descent

Find the logistic learning rule from the general formula of gradient descent : $w_i \leftarrow w_i + \alpha \frac{\partial L(\vec{w})}{\partial w_i}$ (for a single example (\vec{x}, y)).

Logistic learning rule

 $w_i \leftarrow w_i + lpha(y_j - h_{ec w}(ec x_j))h_{ec w}(ec x_j)(1 - h_{ec w}(ec x_j))x_{ji}$

What if .. the dataset is not *linearly* separable?

What if .. the dataset is not *linearly* separable?

Idea

Map into another space (generally higher dimensional) where it is linearly separable : $\vec{x} \mapsto \phi(\vec{x})$

What if .. the dataset is not *linearly* separable?

Idea

Map into another space (generally higher dimensional) where it is linearly separable : $\vec{x} \mapsto \phi(\vec{x})$

Change the space

Find a (possibly higher dimensional) space in which this dataset is linearly separable.

What if .. the dataset is not *linearly* separable?

Idea

Map into another space (generally higher dimensional) where it is linearly separable : $\vec{x} \mapsto \phi(\vec{x})$

Change the space

Find a (possibly higher dimensional) space in which this dataset is linearly separable.

Kernel function

 $K(\vec{x_k}, \vec{x_j}) = \phi(\vec{x_k}).\phi(\vec{x_j})$

What if .. the dataset is not *linearly* separable?

Idea

Map into another space (generally higher dimensional) where it is linearly separable : $\vec{x} \mapsto \phi(\vec{x})$

Change the space

Find a (possibly higher dimensional) space in which this dataset is linearly separable.

Kernel function

 $K(\vec{x_k}, \vec{x_j}) = \phi(\vec{x_k}).\phi(\vec{x_j})$

Reformulation

We can show that $\vec{w} = \sum_{k=1}^{N} \delta_k \vec{x_k}$ then $h_{\vec{w}}(\vec{x_j}) = \sum_{k=1}^{N} \delta_k \vec{x_k} \cdot \vec{x_j} \mapsto \sum_{k=1}^{N} \delta_k \phi(\vec{x_k}) \cdot \phi(\vec{x_j}) = \sum_{k=1}^{N} \delta_k \mathcal{K}(\vec{x_k}, \vec{x_j})$

Linear regression in the new space $h_{\vec{w}}(\phi(\vec{x_j})) = \sum_{k=1}^{N} \delta_k K(\vec{x_k}, \vec{x_j})$

Linear regression in the new space $h_{\vec{w}}(\phi(\vec{x_j})) = \sum_{k=1}^{N} \delta_k K(\vec{x_k}, \vec{x_j})$

Kernel matrix $K \in \mathbb{R}^N \times \mathbb{R}^N$ s.t $K_{ij} = K(\vec{x_i}, \vec{x_j})$

Linear regression in the new space

 $h_{ec w}(\phi(ec x_j)) = \sum_{k=1}^N \delta_k \mathcal{K}(ec x_k, ec x_j)$

Kernel matrix $K \in \mathbb{R}^N \times \mathbb{R}^N$ s.t $K_{ij} = K(\vec{x_i}, \vec{x_j})$

Algorithm

We compute $\vec{\delta}$ instead of \vec{w} :

 $\delta_i \leftarrow \delta_i + \alpha \gamma_i$

Linear regression in the new space $h_{\vec{w}}(\phi(\vec{x_j})) = \sum_{k=1}^{N} \delta_k K(\vec{x_k}, \vec{x_j})$

Kernel matrix $K \in \mathbb{R}^N \times \mathbb{R}^N$ s.t $K_{ij} = K(\vec{x_i}, \vec{x_j})$

Algorithm

We compute $\vec{\delta}$ instead of \vec{w} :

 $\delta_i \leftarrow \delta_i + \alpha \gamma_i$

Popular kernel functions

- Linear : $K(\vec{x}, \vec{z}) = \vec{x} \cdot \vec{z}$
- Polynomial : $K(\vec{x}, \vec{z}) = (1 + \vec{x}.\vec{z})^d$
- Radial Basis Function (RBF) : $K(\vec{x}, \vec{z}) = e^{\frac{-||\vec{x}-\vec{x}||^2}{\sigma^2}}$
- Laplacian Kernel : $K(\vec{x}, \vec{z}) = e^{\frac{-\|\vec{x}-\vec{z}\|}{\sigma}}$
- Sigmoïd Kernel : $K(\vec{x}, \vec{z}) = tanh(a\vec{x}, \vec{z} + b)$

demo

• Linear regression is in pratice computed with gradient descent

- Linear regression is in pratice computed with gradient descent
- A linear classifier with a hard threshold is called a **perceptron** and can be learnt with gradient descent if data is **linearly separable**

Linear Regression and Classification - Summary

- Linear regression is in pratice computed with gradient descent
- A linear classifier with a hard threshold is called a **perceptron** and can be learnt with gradient descent if data is **linearly separable**
- A decreasing learning rate improve convergence

Linear Regression and Classification - Summary

- Linear regression is in pratice computed with gradient descent
- A linear classifier with a hard threshold is called a **perceptron** and can be learnt with gradient descent if data is **linearly separable**
- A decreasing learning rate improve convergence
- Logistic regression replace the hard threshold by the logistic function

Linear Regression and Classification - Summary

- Linear regression is in pratice computed with gradient descent
- A linear classifier with a hard threshold is called a **perceptron** and can be learnt with gradient descent if data is **linearly separable**
- A decreasing learning rate improve convergence
- Logistic regression replace the hard threshold by the logistic function
- The **kernel trick** transforms input data to a higher-dimensional space where a linear separator may exists

- Linear regression is in pratice computed with gradient descent
- A linear classifier with a hard threshold is called a **perceptron** and can be learnt with gradient descent if data is **linearly separable**
- A decreasing learning rate improve convergence
- Logistic regression replace the hard threshold by the logistic function
- The **kernel trick** transforms input data to a higher-dimensional space where a linear separator may exists

To go further ...

• Other non-parametric models : nearest neighbors and locally weighted regression

- Linear regression is in pratice computed with gradient descent
- A linear classifier with a hard threshold is called a **perceptron** and can be learnt with gradient descent if data is **linearly separable**
- A decreasing learning rate improve convergence
- Logistic regression replace the hard threshold by the logistic function
- The **kernel trick** transforms input data to a higher-dimensional space where a linear separator may exists

To go further ...

- Other non-parametric models : nearest neighbors and locally weighted regression
- Support Vector Machines

Why is deep learning successful?

Why is deep learning successful?

Shallow Short computation path **No interaction** No complex interaction between inputs

Deep

Long computation path and complex interactions between many inputs

Type of networks

- feedforward network : directed acyclic graph
- recurrent network : loops computing intermediate or final output

Type of networks

- feedforward network : directed acyclic graph
- recurrent network : loops computing intermediate or final output

Unit (a.k.a. Artificial Neuron)

- g_j : activation function of unit j
- $\vec{w_j}$: weights of unit j

Type of networks

- feedforward network : directed acyclic graph
- recurrent network : loops computing intermediate or final output

Unit (a.k.a. Artificial Neuron)

- g_j : activation function of unit j
- $\vec{w_j}$: weights of unit j

Type of networks

- feedforward network : directed acyclic graph
- recurrent network : loops computing intermediate or final output

Unit (a.k.a. Artificial Neuron)

- g_j : activation function of unit j
- $\vec{w_j}$: weights of unit j

Activation functions

• Logistic or Sigmoid : $\sigma(x) = \frac{1}{1+e^{-x}}$

Type of networks

- feedforward network : directed acyclic graph
- recurrent network : loops computing intermediate or final output

Unit (a.k.a. Artificial Neuron)

• g_j : activation function of unit j

• $\vec{w_j}$: weights of unit j

- Logistic or Sigmoid : $\sigma(x) = \frac{1}{1+e^{-x}}$
- **ReLU** (Rectified Linear Unit) : ReLU(x) = max(0, x)

Type of networks

- feedforward network : directed acyclic graph
- recurrent network : loops computing intermediate or final output

Unit (a.k.a. Artificial Neuron)

- Logistic or Sigmoid : $\sigma(x) = \frac{1}{1+e^{-x}}$
- **ReLU** (Rectified Linear Unit) : ReLU(x) = max(0, x)
- **Softplus** (smooth ReLU) : softplus(x) = log(1 + e^x)

- g_j : activation function of unit j
- $\vec{w_j}$: weights of unit j

Type of networks

- feedforward network : directed acyclic graph
- recurrent network : loops computing intermediate or final output

Unit (a.k.a. Artificial Neuron)

- Logistic or Sigmoid : $\sigma(x) = \frac{1}{1+e^{-x}}$
- **ReLU** (Rectified Linear Unit) : ReLU(x) = max(0, x)
- **Softplus** (smooth ReLU) : softplus(x) = log(1 + e^x)
- tanh : $tanh(x) = \frac{e^{2x}-1}{e^{2x}+1} \ (= 2\sigma(2x) 1)$

- g_j : activation function of unit j
- $\vec{w_j}$: weights of unit j

Type of networks

- feedforward network : directed acyclic graph
- recurrent network : loops computing intermediate or final output

Unit (a.k.a. Artificial Neuron)

$$a_i \longrightarrow b_j \qquad b_j = g_j(\sum_i w_{i,j}a_i)$$

- g_j : activation function of unit j
- $\vec{w_j}$: weights of unit j

Activation functions

- Logistic or Sigmoid : $\sigma(x) = \frac{1}{1+e^{-x}}$
- **ReLU** (Rectified Linear Unit) : ReLU(x) = max(0, x)
- **Softplus** (smooth ReLU) : softplus(x) = log(1 + e^x)
- tanh : $tanh(x) = \frac{e^{2x}-1}{e^{2x}+1} \ (= 2\sigma(2x) 1)$

Universal approximation theorem

A network with just two layers (one non-linear and one linear) can approximate *any continuous function* to an *arbitrary degree of accuracy*.

Example

Example

Forward computation

$$\begin{split} \hat{y} &= g_5(w_{0,5} + w_{3,5}a_3 + w_{4,5}a_4) \\ \hat{y} &= g_5(w_{0,5} + w_{3,5}g_3(w_{0,3} + w_{1,3}x_1 + w_{2,3}x_2) \\ &+ w_{4,5}g_4(w_{0,4} + w_{1,4}x_1 + w_{2,4}x_2)) \end{split}$$

Example

Forward computation

$$\begin{split} \hat{y} &= g_5(w_{0,5} + w_{3,5}a_3 + w_{4,5}a_4) \\ \hat{y} &= g_5(w_{0,5} + w_{3,5}g_3(w_{0,3} + w_{1,3}x_1 + w_{2,3}x_2) \\ &+ w_{4,5}g_4(w_{0,4} + w_{1,4}x_1 + w_{2,4}x_2)) \end{split}$$

$$h_{W}(x) = g^{(2)}(W^{(2)}g^{(1)}(W^{(1)}x))$$

Example

Gradient descent $Loss(h_W) = L_2(y, h_W(x)) = (y - \hat{y})^2$

Forward computation

$$\begin{split} \hat{y} &= g_5(w_{0,5} + w_{3,5}a_3 + w_{4,5}a_4) \\ \hat{y} &= g_5(w_{0,5} + w_{3,5}g_3(w_{0,3} + w_{1,3}x_1 + w_{2,3}x_2) \\ &+ w_{4,5}g_4(w_{0,4} + w_{1,4}x_1 + w_{2,4}x_2)) \end{split}$$

$$h_{W}(x) = g^{(2)}(W^{(2)}g^{(1)}(W^{(1)}x))$$

Example

Forward computation

$$\begin{split} \hat{y} &= g_5(w_{0,5} + w_{3,5}a_3 + w_{4,5}a_4) \\ \hat{y} &= g_5(w_{0,5} + w_{3,5}g_3(w_{0,3} + w_{1,3}x_1 + w_{2,3}x_2) \\ &+ w_{4,5}g_4(w_{0,4} + w_{1,4}x_1 + w_{2,4}x_2)) \end{split}$$

$$h_{W}(x) = g^{(2)}(W^{(2)}g^{(1)}(W^{(1)}x))$$

Gradient descent $Loss(h_W) = L_2(y, h_W(x)) = (y - \hat{y})^2$

Output layer $\frac{\partial Loss(h_W)}{\partial w_{3,5}} = \dots$?

Example

Forward computation

$$\begin{split} \hat{y} &= g_5(w_{0,5} + w_{3,5}a_3 + w_{4,5}a_4) \\ \hat{y} &= g_5(w_{0,5} + w_{3,5}g_3(w_{0,3} + w_{1,3}x_1 + w_{2,3}x_2) \\ &+ w_{4,5}g_4(w_{0,4} + w_{1,4}x_1 + w_{2,4}x_2)) \end{split}$$

$$h_{W}(x) = g^{(2)}(W^{(2)}g^{(1)}(W^{(1)}x))$$

Gradient descent $Loss(h_W) = L_2(y, h_W(x)) = (y - \hat{y})^2$

 $\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} Output \ layer \\ \frac{\partial Loss(h_W)}{\partial w_{3,5}} = \dots \\ -2(y - \hat{y})g_5'(w_{0,5} + w_{3,5}a_3 + w_{4,5}a_4)a_3 = \Delta_5 a_3 \end{array} \end{array}$

Example

Forward computation

$$\begin{split} \hat{y} &= g_5(w_{0,5} + w_{3,5}a_3 + w_{4,5}a_4) \\ \hat{y} &= g_5(w_{0,5} + w_{3,5}g_3(w_{0,3} + w_{1,3}x_1 + w_{2,3}x_2) \\ &+ w_{4,5}g_4(w_{0,4} + w_{1,4}x_1 + w_{2,4}x_2)) \end{split}$$

$$h_{W}(x) = g^{(2)}(W^{(2)}g^{(1)}(W^{(1)}x))$$

Gradient descent $Loss(h_W) = L_2(y, h_W(x)) = (y - \hat{y})^2$

Output layer $\frac{\partial Loss(h_W)}{\partial w_{3,5}} = \dots$ $-2(y - \hat{y})g'_5(w_{0,5} + w_{3,5}a_3 + w_{4,5}a_4)a_3 = \Delta_5a_3$

 $\frac{\text{Hidden layer}}{\frac{\partial \text{Loss}(h_W)}{\partial w_{1,3}}} = \dots ?$

Example

Forward computation

$$\begin{split} \hat{y} &= g_5(w_{0,5} + w_{3,5}a_3 + w_{4,5}a_4) \\ \hat{y} &= g_5(w_{0,5} + w_{3,5}g_3(w_{0,3} + w_{1,3}x_1 + w_{2,3}x_2) \\ &+ w_{4,5}g_4(w_{0,4} + w_{1,4}x_1 + w_{2,4}x_2)) \end{split}$$

$$h_{W}(x) = g^{(2)}(W^{(2)}g^{(1)}(W^{(1)}x))$$

Gradient descent $Loss(h_W) = L_2(y, h_W(x)) = (y - \hat{y})^2$

 $\begin{array}{l} \begin{array}{l} \textbf{Output layer} \\ \frac{\partial Loss(h_W)}{\partial w_{3,5}} = \dots \\ -2(y - \hat{y})g_5'(w_{0,5} + w_{3,5}a_3 + w_{4,5}a_4)a_3 = \Delta_5 a_3 \end{array}$

 $\begin{array}{l} \mbox{Hidden layer} \\ \frac{\partial Loss(h_W)}{\partial w_{1,3}} = \dots \\ \Delta_5 w_{3,5} g_3'(w_{0,3} + w_{1,3} x_1 + w_{2,3} x_2) x_1 = \Delta_3 x_1 \end{array}$

23/42

Example

Forward computation

$$\begin{split} \hat{y} &= g_5(w_{0,5} + w_{3,5}a_3 + w_{4,5}a_4) \\ \hat{y} &= g_5(w_{0,5} + w_{3,5}g_3(w_{0,3} + w_{1,3}x_1 + w_{2,3}x_2) \\ &+ w_{4,5}g_4(w_{0,4} + w_{1,4}x_1 + w_{2,4}x_2)) \end{split}$$

 $h_{W}(x) = g^{(2)}(W^{(2)}g^{(1)}(W^{(1)}x))$

Gradient descent $Loss(h_W) = L_2(y, h_W(x)) = (y - \hat{y})^2$

Output layer $\frac{\partial Loss(h_W)}{\partial w_{3,5}} = \dots$ $-2(y - \hat{y})g'_5(w_{0,5} + w_{3,5}a_3 + w_{4,5}a_4)a_3 = \Delta_5 a_3$

 $\begin{array}{l} \mbox{Hidden layer} \\ \frac{\partial Loss(h_W)}{\partial w_{1,3}} = \dots \\ \Delta_5 w_{3,5} g'_3(w_{0,3} + w_{1,3} x_1 + w_{2,3} x_2) x_1 = \Delta_3 x_1 \end{array}$

Vanishing gradient When $g'_i(in_i) \approx 0 \rightarrow$ learning stops

 $(h_j = h(f_h, g_h))$

Contribution of *h* **on** *L*

 h_j : message from node h to node j $(h_j = h(f_h, g_h))$

 h_j : message from node h to node j $(h_j = h(f_h, g_h))$

Contribution of *h* **on** *L*

∂l	∂L	∂L
$\left \overline{\partial I} \right $	$\overline{h} = \overline{\partial h_j}$	$+ \frac{\partial h_k}{\partial h_k}$

Backpropagate

$\boxed{\frac{\partial L}{\partial f_h} = \frac{\partial L}{\partial h} \frac{\partial h}{\partial f_h}}$	and	$\frac{\partial L}{\partial g_h} =$	$= \frac{\partial L}{\partial h} \frac{\partial h}{\partial g_h}$
---	-----	-------------------------------------	---

- $\frac{\partial L}{\partial h}$: already computed at previous step
- $\frac{\partial h}{\partial f_h}$: specific to the type of node h

 h_j : message from node h to node j $(h_j = h(f_h, g_h))$

Contribution of *h* **on** *L*

Backpropagate

$\frac{\partial L}{\partial f} = \frac{\partial L}{\partial h} \frac{\partial h}{\partial f}$	and	$\frac{\partial L}{\partial \sigma} =$	$=\frac{\partial L}{\partial h}\frac{\partial h}{\partial a}$
$OT_h OT OT_h$		Ogh	$On Og_h$

- $\frac{\partial L}{\partial h}$: already computed at previous step
- $\frac{\partial h}{\partial f_h}$: specific to the type of node h

Until ..

... we reach a node corresponding to a parameter $w : \frac{\partial L}{\partial w} \rightarrow$ update w

General gradient descent $W \leftarrow W - \alpha \nabla_W L(W)$

Batches

- When *W* dimensionality and the training set are very large → minibatch
- Gradient contributions of each batch are independent \rightarrow **parallel** computing (GPU or TPU)

Batches

- When *W* dimensionality and the training set are very large → minibatch
- Gradient contributions of each batch are independent \rightarrow **parallel** computing (GPU or TPU)

Decreasing learning rate $\alpha(t)$ decreasing function \rightarrow find the right schedule

Batches

- When *W* dimensionality and the training set are very large → minibatch
- Gradient contributions of each batch are independent \rightarrow **parallel** computing (GPU or TPU)

Decreasing learning rate $\alpha(t)$ decreasing function \rightarrow find the right schedule

Gradient has high variance on small batches and thus may point to a wrong direction ..

Batches

- When *W* dimensionality and the training set are very large → minibatch
- Gradient contributions of each batch are independent \rightarrow **parallel** computing (GPU or TPU)

Decreasing learning rate $\alpha(t)$ decreasing function \rightarrow find the right schedule

Gradient has high variance on small batches and thus may point to a wrong direction ..

• increase minibatch size as training proceeds

Batches

- When *W* dimensionality and the training set are very large → minibatch
- Gradient contributions of each batch are independent \rightarrow **parallel** computing (GPU or TPU)

Decreasing learning rate $\alpha(t)$ decreasing function \rightarrow find the right schedule

Gradient has high variance on small batches and thus may point to a wrong direction ..

- increase minibatch size as training proceeds
- momemtum : keep a running average of the gradient

Batches

- When *W* dimensionality and the training set are very large → minibatch
- Gradient contributions of each batch are independent \rightarrow **parallel** computing (GPU or TPU)

Decreasing learning rate $\alpha(t)$ decreasing function \rightarrow find the right schedule

Gradient has high variance on small batches and thus may point to a wrong direction ..

- increase minibatch size as training proceeds
- momemtum : keep a running average of the gradient

Batch normalization

For each example *i* of the minibatch, replace each output z_i of each node by $\hat{z}_i = \gamma \frac{z_i - \mu}{\sqrt{\varepsilon + \sigma^2}} + \beta$ (μ : mean, σ : standard deviation, within the minibatch) ($\varepsilon > 0$) (γ and β : new parameters)

Input encoding

• generally straighforward : $\{\top, \bot\} \rightarrow \{0, 1\}, \mathbb{R} \rightarrow \mathbb{R}$, log scale for big magnitudes, ...

Input encoding

- generally straighforward : $\{\top, \bot\} \to \{0, 1\}, \mathbb{R} \to \mathbb{R}$, log scale for big magnitudes, ...
- $\bullet \ \mbox{categories} \rightarrow \mbox{one-hot encoding}$

Input encoding

- generally straighforward : $\{\top, \bot\} \to \{0, 1\}, \mathbb{R} \to \mathbb{R}$, log scale for big magnitudes, ...
- $\bullet \ \mbox{categories} \rightarrow \mbox{one-hot encoding}$
- images \rightarrow array-like structure to represent **adjacency**

Input encoding

- generally straighforward : $\{\top, \bot\} \to \{0, 1\}, \mathbb{R} \to \mathbb{R}$, log scale for big magnitudes, ...
- $\bullet \ \mbox{categories} \rightarrow \mbox{one-hot} \ \mbox{encoding}$
- images \rightarrow array-like structure to represent **adjacency**

Output encoding

• multiclass \rightarrow one-hot encoding : probability to be in the class ksoftmax layer : $softmax(\vec{in})_k = \frac{e^{in_k}}{\sum e^{in_{k'}}}$

Input encoding

- generally straighforward : $\{\top, \bot\} \to \{0, 1\}, \mathbb{R} \to \mathbb{R}$, log scale for big magnitudes, ...
- $\bullet \mbox{ categories} \rightarrow \mbox{ one-hot encoding}$
- images \rightarrow array-like structure to represent **adjacency**

Output encoding

- multiclass \rightarrow one-hot encoding : probability to be in the class ksoftmax layer : $softmax(\vec{in})_k = \frac{e^{in_k}}{\sum e^{in_{k'}}}$
- $\bullet \ \ \text{regression} \rightarrow \text{linear layer}$

Hidden layer

- 1985-2010 : sigmoid or tanh
- now : *ReLU* and *softplus* more popular (vanishing gradient)

Input encoding

- generally straighforward : $\{\top, \bot\} \to \{0, 1\}, \mathbb{R} \to \mathbb{R}$, log scale for big magnitudes, ...
- $\bullet \ \ \mathsf{categories} \to \mathbf{one-hot} \ \mathbf{encoding}$
- images \rightarrow array-like structure to represent **adjacency**

Output encoding

- multiclass → one-hot encoding : probability to be in the class k
 softmax layer : softmax(in)_k = e^{ink}/∑e^{ink'}
- regression \rightarrow linear layer

 $\begin{array}{l} \textbf{Cross-entropy}\\ \text{Measure of dissimilarity between two}\\ \text{distributions P and Q}: \end{array}$

$$egin{aligned} & H(P,Q) = -E_{oldsymbol{z}\sim P(oldsymbol{z})}(\log Q(oldsymbol{z})) = \ & -\int P(oldsymbol{z})\log Q(oldsymbol{z})doldsymbol{z} \end{aligned}$$

 $\begin{array}{l} \textbf{Cross-entropy}\\ \text{Measure of dissimilarity between two}\\ \text{distributions P and Q}: \end{array}$

$$egin{aligned} & H(P, Q) = -E_{oldsymbol{z} \sim P(oldsymbol{z})}(\log Q(oldsymbol{z})) = \ & -\int P(oldsymbol{z})\log Q(oldsymbol{z})doldsymbol{z} \end{aligned}$$

For classification

- *P* : the true distribution over training examples
- Q : the predictive hypothesis

Cross-entropy

Measure of dissimilarity between two distributions P and Q :

$$egin{aligned} & H(P, Q) = -E_{oldsymbol{z} \sim P(oldsymbol{z})}(\log Q(oldsymbol{z})) = \ & -\int P(oldsymbol{z})\log Q(oldsymbol{z})doldsymbol{z} \end{aligned}$$

For classification

- *P* : the true distribution over training examples
- Q : the predictive hypothesis

Binary classification

- probability of output y = 1 : $q_{y=1} = \hat{y}$
- probability of output y = 0 : $q_{y=0} = 1 \hat{y}$

$$H(p,q) = -\sum_i p_i \log q_i =$$

 $-y \log \hat{y} - (1-y) \log(1-\hat{y})$

Cross-entropy

Measure of dissimilarity between two distributions P and Q :

$$egin{aligned} & H(P, Q) = -E_{oldsymbol{z} \sim P(oldsymbol{z})}(\log Q(oldsymbol{z})) = \ & -\int P(oldsymbol{z})\log Q(oldsymbol{z})doldsymbol{z} \end{aligned}$$

For classification

- *P* : the true distribution over training examples
- Q : the predictive hypothesis

Binary classification

- probability of output y = 1 : $q_{y=1} = \hat{y}$
- probability of output y = 0 : $q_{y=0} = 1 \hat{y}$

$$H(p,q) = -\sum_{i} p_i \log q_i =$$

 $-y \log \hat{y} - (1-y) \log(1-\hat{y})$

Cross-entropy loss

$$L(\boldsymbol{w}) = \frac{1}{N} \sum_{k=1}^{N} H(p_k, q_k)$$

$$L(\boldsymbol{w}) = -\frac{1}{N} \sum_{k=1}^{N} (y_k \log \hat{y_k} + (1 - y_k) \log(1 - \hat{y_k}))$$

Image specificities

Image specificities

 adjacency → units should receive input from a *small local* region

Image specificities

- adjacency → units should receive input from a *small local* region
- space invariance \rightarrow units should share their weights

Image specificities

- adjacency → units should receive input from a *small local* region
- space invariance \rightarrow units should share their weights

Convolution

• **kernel** : pattern of weights that is *replicated*

Image specificities

- adjacency → units should receive input from a *small local* region
- space invariance \rightarrow units should share their weights

Convolution

- **kernel** : pattern of weights that is *replicated*
- **convolution** : apply a kernel \boldsymbol{k} of size l : $\boxed{\boldsymbol{z} = \boldsymbol{x} * \boldsymbol{k}} \rightarrow z_i = \sum_{j=1}^l k_j x_{j+i-(l+1)/2}$

Image specificities

- adjacency → units should receive input from a *small local* region
- space invariance \rightarrow units should share their weights

Convolution

- **kernel** : pattern of weights that is *replicated*
- **convolution** : apply a kernel \boldsymbol{k} of size l : $\boxed{\boldsymbol{z} = \boldsymbol{x} * \boldsymbol{k}} \rightarrow z_i = \sum_{j=1}^l k_j x_{j+i-(l+1)/2}$

Pooling

• average pooling : $\mathbf{k} = (\frac{1}{l}, \dots, \frac{1}{l})$ (if s > 1 : downsampling)

Image specificities

- adjacency → units should receive input from a *small local* region
- space invariance \rightarrow units should share their weights

Convolution

- **kernel** : pattern of weights that is *replicated*
- **convolution** : apply a kernel \boldsymbol{k} of size l : $\boxed{\boldsymbol{z} = \boldsymbol{x} * \boldsymbol{k}} \rightarrow z_i = \sum_{j=1}^l k_j x_{j+i-(l+1)/2}$

Pooling

- average pooling : k = (¹/₁,..., ¹/_l) (if s > 1 : downsampling)
- max-pooling :

$$z_i = \max_{1 \le j \le l} (x_{j+i-(l+1)/2})$$

Tensor

Multidimensional arrays of any dimension :

- 1D : vector
- 2D : matrix
- ...

Tensor

Multidimensional arrays of any dimension :

- 1D : vector
- 2D : matrix
- ...

Example

input minibatch of 64 images RGB 256x256 256x256x3x64

Tensor

Multidimensional arrays of any dimension :

- 1D : vector
- 2D : matrix
- ...

Example

input \longrightarrow output minibatch of 64 images RGB 256x256 96 kernels 5x5x3 with s = 2 feature map 256x256x3x64 \longrightarrow

Tensor

Multidimensional arrays of any dimension :

- 1D : vector
- 2D : matrix
- ...

Example

input \longrightarrow output minibatch of 64 images RGB 256x256 96 kernels 5x5x3 with s = 2 **feature map** 256x256x3x64 \longrightarrow 128x128x96x64

To avoid vanishing gradient in very deep networks ightarrow keep information of the previous layer

To avoid vanishing gradient in very deep networks ightarrow keep information of the previous layer

Residual

Instead of $z^{(i)} = h(z^{(i-1)}) = g^{(i)}(W^{(i)}z^{(i-1)}) \rightarrow z^{(i)} = g_r^{(i)}(z^{(i-1)} + f(z^{(i-1)}))$

To avoid vanishing gradient in very deep networks \rightarrow keep information of the previous layer

Residual

Instead of $z^{(i)} = h(z^{(i-1)}) = g^{(i)}(W^{(i)}z^{(i-1)}) \rightarrow z^{(i)} = g_r^{(i)}(z^{(i-1)} + f(z^{(i-1)}))$

•
$$g_r^{(i)}$$
 : activation function

To avoid vanishing gradient in very deep networks ightarrow keep information of the previous layer

Residual

Instead of $z^{(i)} = h(z^{(i-1)}) = g^{(i)}(W^{(i)}z^{(i-1)}) \rightarrow z^{(i)} = g_r^{(i)}(z^{(i-1)} + f(z^{(i-1)}))$

- $g_r^{(i)}$: activation function
- f typically a linear + non-linear function : f(z) = Vg(Wz)

To avoid vanishing gradient in very deep networks ightarrow keep information of the previous layer

Residual

Instead of $z^{(i)} = h(z^{(i-1)}) = g^{(i)}(W^{(i)}z^{(i-1)}) \rightarrow z^{(i)} = g_r^{(i)}(z^{(i-1)} + f(z^{(i-1)}))$

- $g_r^{(i)}$: activation function
- f typically a linear + non-linear function : f(z) = Vg(Wz)

Disable a layer

We can make layers that can be disabled by setting $\mathbf{V} = \mathbf{0}$: if $g_r = ReLU$ (at least for layers i - 1 and i), $\mathbf{z}^{(i-1)} = ReLU(\mathbf{in}^{(i-1)})$ then $\mathbf{z}^{(i)} = ReLU(\mathbf{z}^{(i-1)}) = ReLU(ReLU(\mathbf{in}^{(i-1)})) = ReLU(\mathbf{in}^{(i-1)}) = \mathbf{z}^{(i-1)}$

Time series A sequence of inputs x_1, \ldots, x_T and observed outputs y_1, \ldots, y_T . **Time series** A sequence of inputs x_1, \ldots, x_T and observed outputs y_1, \ldots, y_T .

Signal or Text processing

- time series \rightarrow we need a memory z
- $\bullet~$ time invariance \rightarrow share weights at each time step

Time series A sequence of inputs x_1, \ldots, x_T and observed outputs y_1, \ldots, y_T .

Signal or Text processing

- time series \rightarrow we need a memory z
- $\bullet~$ time invariance \rightarrow share weights at each time step

Basic RNN

Time series A sequence of inputs x_1, \ldots, x_T and observed outputs y_1, \ldots, y_T .

Signal or Text processing

- time series → we need a memory z
- time invariance \rightarrow share weights at each time step

Basic RNN

Time series A sequence of inputs x_1, \ldots, x_T and observed outputs y_1, \ldots, y_T .

Signal or Text processing

- time series → we need a memory z
- time invariance \rightarrow share weights at each time step

Basic RNN

Forward $z_t = g_z(w_{z,z}z_{t-1} + w_{x,z}x_t)$ and $\hat{y}_t = g_y(w_{y,z}z_t)$

Time series A sequence of inputs x_1, \ldots, x_T and observed outputs y_1, \ldots, y_T .

Signal or Text processing

- time series \rightarrow we need a memory z
- time invariance \rightarrow share weights at each time step

Basic RNN

Forward $z_t = g_z(w_{z,z}z_{t-1} + w_{x,z}x_t)$ and $\hat{y}_t = g_y(w_{y,z}z_t)$

Backpropagation

$$\frac{\partial L}{\partial w_{z,z}} = \sum_{t=1}^{T} -2(y_t - \hat{y}_t)g'_y(in_{y,t})w_{z,y}\frac{\partial z_t}{w_{z,z}}$$
$$\frac{\partial z_t}{\partial w_{z,z}} = g'_z(in_{z,t})(z_{t-1} + w_{z,z}\frac{\partial z_{t-1}}{w_{z,z}})$$

Time series A sequence of inputs x_1, \ldots, x_T and observed outputs y_1, \ldots, y_T .

Signal or Text processing

- time series \rightarrow we need a memory z
- time invariance \rightarrow share weights at each time step

Basic RNN

Forward $z_t = g_z(w_{z,z}z_{t-1} + w_{x,z}x_t)$ and $\hat{y}_t = g_y(w_{y,z}z_t)$

Backpropagation

$$\frac{\partial L}{\partial w_{z,z}} = \sum_{t=1}^{T} -2(y_t - \hat{y}_t)g_y'(in_{y,t})w_{z,y}\frac{\partial z_t}{w_{z,z}}$$

$$\frac{\partial z_t}{\partial w_{z,z}} = g'_z(in_{z,t})(z_{t-1} + w_{z,z}\frac{\partial z_{t-1}}{w_{z,z}})$$

Issue Gradient at step *T* will include terms proportional to $w_{z,z} \prod_{t=1}^{T} g'_{z}(in_{z,t})$

 \hookrightarrow vanishing $(w_{z,z} < 1)$ or *exploding* $(w_{z,z} > 1)$ gradient

Long Short-Term Memory (LSTM)

• memory cell c : copied at each time step

Long Short-Term Memory (LSTM)

• memory cell c : copied at each time step

Long Short-Term Memory (LSTM)

• memory cell c : copied at each time step

Gating units :

• **forget gate** *f* : elements of the memory to *forget/remember*

Long Short-Term Memory (LSTM)

• memory cell c : copied at each time step

- **forget gate** *f* : elements of the memory to *forget/remember*
- **input gate** *i* : elements of the memory to *update with new info* from the inputs

Long Short-Term Memory (LSTM)

• memory cell c : copied at each time step

- **forget gate** *f* : elements of the memory to *forget/remember*
- **input gate** *i* : elements of the memory to *update with new info* from the inputs
- **output gate** *o* : elements of the memory to *transfer* to the short-term memory

Long Short-Term Memory (LSTM)

• memory cell c : copied at each time step

- **forget gate** *f* : elements of the memory to *forget/remember*
- **input gate** *i* : elements of the memory to *update with new info* from the inputs
- **output gate** *o* : elements of the memory to *transfer* to the short-term memory
- short-term memory z : as for basic RNN

Long Short-Term Memory (LSTM)

• memory cell c : copied at each time step

Gating units :

- **forget gate** *f* : elements of the memory to *forget/remember*
- **input gate** *i* : elements of the memory to *update with new info* from the inputs
- **output gate** *o* : elements of the memory to *transfer* to the short-term memory
- short-term memory z : as for basic RNN

•
$$f_t = \sigma(W_{x,f}x_t + W_{z,f}z_{t-1})$$

Long Short-Term Memory (LSTM)

• memory cell c : copied at each time step

Gating units :

- **forget gate** *f* : elements of the memory to *forget/remember*
- **input gate** *i* : elements of the memory to *update with new info* from the inputs
- **output gate** *o* : elements of the memory to *transfer* to the short-term memory
- short-term memory z : as for basic RNN

- $\mathbf{f}_t = \sigma(\mathbf{W}_{x,f}\mathbf{x}_t + \mathbf{W}_{z,f}\mathbf{z}_{t-1})$
- $\mathbf{i}_t = \sigma(\mathbf{W}_{x,i}\mathbf{x}_t + \mathbf{W}_{z,i}\mathbf{z}_{t-1})$

Long Short-Term Memory (LSTM)

• memory cell c : copied at each time step

Gating units :

- **forget gate** *f* : elements of the memory to *forget/remember*
- **input gate** *i* : elements of the memory to *update with new info* from the inputs
- **output gate** *o* : elements of the memory to *transfer* to the short-term memory
- short-term memory z : as for basic RNN

- $\mathbf{f}_t = \sigma(\mathbf{W}_{x,f}\mathbf{x}_t + \mathbf{W}_{z,f}\mathbf{z}_{t-1})$
- $\mathbf{i}_t = \sigma(\mathbf{W}_{x,i}\mathbf{x}_t + \mathbf{W}_{z,i}\mathbf{z}_{t-1})$
- $\boldsymbol{o}_t = \sigma(\boldsymbol{W}_{x,o}\boldsymbol{x}_t + \boldsymbol{W}_{z,o}\boldsymbol{z}_{t-1})$

Long Short-Term Memory (LSTM)

• memory cell c : copied at each time step

Gating units :

- **forget gate** *f* : elements of the memory to *forget/remember*
- **input gate** *i* : elements of the memory to *update with new info* from the inputs
- **output gate** *o* : elements of the memory to *transfer* to the short-term memory
- short-term memory z : as for basic RNN

- $f_t = \sigma(W_{x,f}x_t + W_{z,f}z_{t-1})$
- $\mathbf{i}_t = \sigma(\mathbf{W}_{x,i}\mathbf{x}_t + \mathbf{W}_{z,i}\mathbf{z}_{t-1})$
- $\boldsymbol{o}_t = \sigma(\boldsymbol{W}_{x,o}\boldsymbol{x}_t + \boldsymbol{W}_{z,o}\boldsymbol{z}_{t-1})$
- $\boldsymbol{c}_t = \boldsymbol{c}_{t-1} \odot \boldsymbol{f}_t + \boldsymbol{i}_t \odot tanh(\boldsymbol{W}_{x,c} \boldsymbol{x}_t + \boldsymbol{W}_{z,c} \boldsymbol{z}_{t-1})$

Long Short-Term Memory (LSTM)

• memory cell c : copied at each time step

Gating units :

- **forget gate** *f* : elements of the memory to *forget/remember*
- **input gate** *i* : elements of the memory to *update with new info* from the inputs
- **output gate** *o* : elements of the memory to *transfer* to the short-term memory
- short-term memory z : as for basic RNN

- $f_t = \sigma(W_{x,f}x_t + W_{z,f}z_{t-1})$
- $\mathbf{i}_t = \sigma(\mathbf{W}_{x,i}\mathbf{x}_t + \mathbf{W}_{z,i}\mathbf{z}_{t-1})$
- $\boldsymbol{o}_t = \sigma(\boldsymbol{W}_{x,o}\boldsymbol{x}_t + \boldsymbol{W}_{z,o}\boldsymbol{z}_{t-1})$
- $\boldsymbol{c}_t = \boldsymbol{c}_{t-1} \odot \boldsymbol{f}_t + \boldsymbol{i}_t \odot tanh(\boldsymbol{W}_{x,c}\boldsymbol{x}_t + \boldsymbol{W}_{z,c}\boldsymbol{z}_{t-1})$
- $\boldsymbol{z}_t = tanh(\boldsymbol{c}_t) \odot \boldsymbol{o}_t$

Improve generalization – Design the architecture

Specialized architecture

- Convolutional : images
- Recurrent : text and audio signals

- **Convolutional** : images
- Recurrent : text and audio signals

Empirical result For a fixed number of weights : *the deeper the better*

- **Convolutional** : images
- Recurrent : text and audio signals

Neural architecture search

Optimisation problem with **hyperparameters** : depth, width, connectivity, ...

Empirical result

- **Convolutional** : images
- Recurrent : text and audio signals

Neural architecture search

Optimisation problem with **hyperparameters** : depth, width, connectivity, ...

• Grid search

Empirical result

- **Convolutional** : images
- Recurrent : text and audio signals

Neural architecture search

Optimisation problem with **hyperparameters** : depth, width, connectivity, ...

- Grid search
- Evolutionary algorithm : recombination (joining parts of two networks) + mutation (adding/removing a layer or changing a parameter value)

Empirical result

- **Convolutional** : images
- Recurrent : text and audio signals

Neural architecture search

Optimisation problem with **hyperparameters** : depth, width, connectivity, ...

- Grid search
- Evolutionary algorithm : recombination (joining parts of two networks) + mutation (adding/removing a layer or changing a parameter value)
- Hill climbing with mutations

Empirical result

- **Convolutional** : images
- Recurrent : text and audio signals

Neural architecture search

Optimisation problem with **hyperparameters** : depth, width, connectivity, ...

- Grid search
- Evolutionary algorithm : recombination (joining parts of two networks) + mutation (adding/removing a layer or changing a parameter value)
- Hill climbing with mutations
- Reinforcement learning

Empirical result

- **Convolutional** : images
- Recurrent : text and audio signals

Neural architecture search

Optimisation problem with **hyperparameters** : depth, width, connectivity, ...

- Grid search
- Evolutionary algorithm : recombination (joining parts of two networks) + mutation (adding/removing a layer or changing a parameter value)
- Hill climbing with mutations
- Reinforcement learning
- Bayesian optimization

Empirical result

- **Convolutional** : images
- Recurrent : text and audio signals

Neural architecture search

Optimisation problem with **hyperparameters** : depth, width, connectivity, ...

- Grid search
- Evolutionary algorithm : recombination (joining parts of two networks) + mutation (adding/removing a layer or changing a parameter value)
- Hill climbing with mutations
- Reinforcement learning
- Bayesian optimization
- Gradient descent

Empirical result

- **Convolutional** : images
- Recurrent : text and audio signals

Neural architecture search

Optimisation problem with **hyperparameters** : depth, width, connectivity, ...

- Grid search
- Evolutionary algorithm : recombination (joining parts of two networks) + mutation (adding/removing a layer or changing a parameter value)
- Hill climbing with mutations
- Reinforcement learning
- Bayesian optimization
- Gradient descent

Empirical result

For a fixed number of weights : *the deeper the better*

Train and evaluate

Reduce time of estimation : train on test set + evaluate on validation set

- **Convolutional** : images
- Recurrent : text and audio signals

Neural architecture search

Optimisation problem with **hyperparameters** : depth, width, connectivity, ...

- Grid search
- Evolutionary algorithm : recombination (joining parts of two networks) + mutation (adding/removing a layer or changing a parameter value)
- Hill climbing with mutations
- Reinforcement learning
- Bayesian optimization
- Gradient descent

Empirical result

For a fixed number of weights : *the deeper the better*

Train and evaluate

Reduce time of estimation : train on test set + evaluate on validation set

• Smaller training set

- **Convolutional** : images
- Recurrent : text and audio signals

Neural architecture search

Optimisation problem with **hyperparameters** : depth, width, connectivity, ...

- Grid search
- Evolutionary algorithm : recombination (joining parts of two networks) + mutation (adding/removing a layer or changing a parameter value)
- Hill climbing with mutations
- Reinforcement learning
- Bayesian optimization
- Gradient descent

Empirical result

For a fixed number of weights : *the deeper the better*

Train and evaluate

- Smaller training set
- Fewer batches + prediction of improvement

- **Convolutional** : images
- Recurrent : text and audio signals

Neural architecture search

Optimisation problem with **hyperparameters** : depth, width, connectivity, ...

- Grid search
- Evolutionary algorithm : recombination (joining parts of two networks) + mutation (adding/removing a layer or changing a parameter value)
- Hill climbing with mutations
- Reinforcement learning
- Bayesian optimization
- Gradient descent

Empirical result

For a fixed number of weights : *the deeper the better*

Train and evaluate

- Smaller training set
- Fewer batches + prediction of improvement
- Reduced version of the network

- **Convolutional** : images
- Recurrent : text and audio signals

Neural architecture search

Optimisation problem with **hyperparameters** : depth, width, connectivity, ...

- Grid search
- Evolutionary algorithm : recombination (joining parts of two networks) + mutation (adding/removing a layer or changing a parameter value)
- Hill climbing with mutations
- Reinforcement learning
- Bayesian optimization
- Gradient descent

Empirical result

For a fixed number of weights : *the deeper the better*

Train and evaluate

- Smaller training set
- Fewer batches + prediction of improvement
- Reduced version of the network
- Focus on subgraph

- **Convolutional** : images
- Recurrent : text and audio signals

Neural architecture search

Optimisation problem with **hyperparameters** : depth, width, connectivity, ...

- Grid search
- Evolutionary algorithm : recombination (joining parts of two networks) + mutation (adding/removing a layer or changing a parameter value)
- Hill climbing with mutations
- Reinforcement learning
- Bayesian optimization
- Gradient descent

Empirical result

For a fixed number of weights : *the deeper the better*

Train and evaluate

- Smaller training set
- Fewer batches + prediction of improvement
- Reduced version of the network
- Focus on subgraph
- Learn heuristic evaluation function

Weight decay

Regularization with penalty $\lambda \sum_{i,j} oldsymbol{W}_{i,j}^2$, typically $\lambda = 10^{-4}$

 \hookrightarrow Encourage small weights (to stay in the linear part for sigmoid activation)

Weight decay

Regularization with penalty $\lambda \sum_{i,j} oldsymbol{W}_{i,j}^2$, typically $\lambda = 10^{-4}$

 \hookrightarrow Encourage small weights

(to stay in the linear part for sigmoid activation)

Dropout

At each step of training deactivate a random set of units

- Encourage the detection of more features
- Make it more robust to noise

Vision

Deep convolutional networks (since 1990s)

ImageNet competition : classification 1200000 images in 1000 categories

In 2012, AlexNet : error rate <15.3% (2nd : 25%) (now, error rate <2%)

Vision

Deep convolutional networks (since 1990s)

ImageNet competition : classification 1200000 images in 1000 categories

In 2012, AlexNet : error rate <15.3% (2nd : 25%) (now, error rate <2%)

Natural Langage processing

Translation problems :

- $\bullet\,$ Two networks : from L1 to IR + from IR to L2
- One end-to-end network \leftarrow performs better

Speech recognition : representation of words with high-dimensional vectors ightarrow word embeddings

Vision

Deep convolutional networks (since 1990s)

ImageNet competition : classification 1200000 images in 1000 categories

In 2012, AlexNet : error rate <15.3% (2nd : 25%) (now, error rate <2%)

Natural Langage processing

Translation problems :

- $\bullet\,$ Two networks : from L1 to IR + from IR to L2
- One end-to-end network \leftarrow performs better

Speech recognition : representation of words with high-dimensional vectors ightarrow word embeddings

Reinforcement learning

Optimise the sum of *future rewards* : learn a value function, Q-function, policy, $\ldots \rightarrow$ *deep reinforcement learning*

DeepMind : DQN an Atari-playing agent (2013) and AlphaGo (2014)

AlexNet architecture

Architecture of Alexnet. From left to right (input to output) five convolutional layers with Max Pooling after layers 1,2, and 5, followed by a three layer fully connected classifier (layers 6-8). The number of neurons in the output layer is equal to the designed number of output classes.

• Neural Networks = computation graph composed of parameterized linear-threshold units

- Neural Networks = computation graph composed of parameterized linear-threshold units
- A neural network can represent complex nonlinear functions

- Neural Networks = computation graph composed of parameterized linear-threshold units
- A neural network can represent complex nonlinear functions
- Backpropagation = gradient descent for neural networks

- Neural Networks = computation graph composed of parameterized linear-threshold units
- A neural network can represent complex nonlinear functions
- Backpropagation = gradient descent for neural networks
- Deep learning is suited for visual object recognition, speech recognition, natural language processing and reinforcement learning

- Neural Networks = computation graph composed of parameterized linear-threshold units
- A neural network can represent complex nonlinear functions
- **Backpropagation** = gradient descent for neural networks
- Deep learning is suited for visual object recognition, speech recognition, natural language processing and reinforcement learning
- **Convolutional** networks \rightarrow data with grid topology (e.g. images)

- Neural Networks = computation graph composed of parameterized linear-threshold units
- A neural network can represent complex nonlinear functions
- **Backpropagation** = gradient descent for neural networks
- Deep learning is suited for visual object recognition, speech recognition, natural language processing and reinforcement learning
- **Convolutional** networks \rightarrow data with grid topology (e.g. images)
- Recurrent networks \rightarrow sequence data (e.g. language modeling and machine translation)

- Neural Networks = computation graph composed of parameterized linear-threshold units
- A neural network can represent complex nonlinear functions
- **Backpropagation** = gradient descent for neural networks
- Deep learning is suited for visual object recognition, speech recognition, natural language processing and reinforcement learning
- **Convolutional** networks \rightarrow data with grid topology (e.g. images)
- Recurrent networks \rightarrow sequence data (e.g. language modeling and machine translation)

To go further ...

• Transfer learning : re-train a pretrained network for a specific task

- Neural Networks = computation graph composed of parameterized linear-threshold units
- A neural network can represent complex nonlinear functions
- **Backpropagation** = gradient descent for neural networks
- Deep learning is suited for visual object recognition, speech recognition, natural language processing and reinforcement learning
- **Convolutional** networks \rightarrow data with grid topology (e.g. images)
- Recurrent networks \rightarrow sequence data (e.g. language modeling and machine translation)

To go further ...

- Transfer learning : re-train a pretrained network for a specific task
- Generative Adversarial Networks : a generator network + a discriminator network

Model Selection and Optimisation

Learn several hypothesis h_1, h_2, \ldots, h_K and use a combination $h^* = \{h_1, h_2, \ldots, h_K\}$

- reduce bias of each base model by combining
- reduce variance of learning by voting

Learn several hypothesis h_1, h_2, \ldots, h_K and use a combination $h^* = \{h_1, h_2, \ldots, h_K\}$

- reduce bias of each base model by combining
- reduce variance of learning by voting

Bagging

$$h^*(\boldsymbol{x}) = \frac{1}{K} \sum_{i=1}^{K} h_i(\boldsymbol{x})$$
: voting in the same model class

Example : random forests

Learn several hypothesis h_1, h_2, \ldots, h_K and use a combination $h^* = \{h_1, h_2, \ldots, h_K\}$

- reduce bias of each base model by combining
- reduce variance of learning by voting

Bagging

$$h^*(oldsymbol{x}) = rac{1}{\kappa} \sum_{i=1}^\kappa h_i(oldsymbol{x})
ight|$$
 : voting in the same model class

Example : random forests

Stacking

Train a new hypothesis on validation set augmented with the predictions of h_1, h_2, \ldots, h_K

Learn several hypothesis h_1, h_2, \ldots, h_K and use a combination $h^* = \{h_1, h_2, \ldots, h_K\}$

- reduce bias of each base model by combining
- reduce variance of learning by voting

Bagging

$$h^*(oldsymbol{x}) = rac{1}{\kappa} \sum_{i=1}^\kappa h_i(oldsymbol{x})$$
 : voting in the same model class

Example : random forests

Stacking

Train a new hypothesis on validation set augmented with the predictions of h_1, h_2, \ldots, h_K

• learn a weight for each hypothesis h_i : trust

Learn several hypothesis h_1, h_2, \ldots, h_K and use a combination $h^* = \{h_1, h_2, \ldots, h_K\}$

- reduce bias of each base model by combining
- reduce variance of learning by voting

Bagging

$$h^*(oldsymbol{x}) = rac{1}{\kappa} \sum_{i=1}^\kappa h_i(oldsymbol{x})$$
 : voting in the same model class

Example : random forests

Stacking

Train a new hypothesis on validation set augmented with the predictions of h_1, h_2, \ldots, h_K

- learn a weight for each hypothesis h_i : trust
- we can add metadata (e.g. time to compute) and stack several layers

Learn several hypothesis h_1, h_2, \ldots, h_K and use a combination $h^* = \{h_1, h_2, \ldots, h_K\}$

- reduce bias of each base model by combining
- reduce variance of learning by voting

Bagging

$$h^*(oldsymbol{x}) = rac{1}{K} \sum_{i=1}^K h_i(oldsymbol{x})
ight|$$
 : voting in the same model class

Example : random forests

Stacking

Train a new hypothesis on validation set augmented with the predictions of h_1, h_2, \ldots, h_K

- learn a weight for each hypothesis h_i : trust
- we can add metadata (e.g. time to compute) and stack several layers

Boosting

 Boost incorrectly classified training example by increasing its weight (number of occurences), iterate after learning each h_i

2. Weighted voting :
$$h^*(\mathbf{x}) = \sum_{i=1}^{K} z_i h_i(\mathbf{x})$$

Learn several hypothesis h_1, h_2, \ldots, h_K and use a combination $h^* = \{h_1, h_2, \ldots, h_K\}$

- reduce bias of each base model by combining
- reduce variance of learning by voting

Bagging

$$h^*(oldsymbol{x}) = rac{1}{K} \sum_{i=1}^K h_i(oldsymbol{x})
ight|$$
 : voting in the same model class

Example : random forests

Stacking

Train a new hypothesis on validation set augmented with the predictions of h_1, h_2, \ldots, h_K

- learn a weight for each hypothesis h_i : trust
- we can add metadata (e.g. time to compute) and stack several layers

Boosting

 Boost incorrectly classified training example by increasing its weight (number of occurences), iterate after learning each h_i

2. Weighted voting :
$$h^*(\mathbf{x}) = \sum_{i=1}^{K} z_i h_i(\mathbf{x})$$

Gradient boosting Boosting with *gradient descent* to find the weight on training examples 38/42

• Random Forests : lot of categorical features and many irrelevant

- Random Forests : lot of categorical features and many irrelevant
- Non-parametric models : lot of data and no prior knowledge → resulting hypothesis are expensive to compute

- Random Forests : lot of categorical features and many irrelevant
- Non-parametric models : lot of data and no prior knowledge \rightarrow resulting hypothesis are expensive to compute
- Logistic Regression performs similarly than SVM

- Random Forests : lot of categorical features and many irrelevant
- Non-parametric models : lot of data and no prior knowledge \rightarrow resulting hypothesis are expensive to compute
- Logistic Regression performs similarly than SVM
- $\ensuremath{\mathsf{SVM}}$: is better for not too large dataset with high dimension

- Random Forests : lot of categorical features and many irrelevant
- Non-parametric models : lot of data and no prior knowledge \rightarrow resulting hypothesis are expensive to compute
- Logistic Regression performs similarly than SVM
- $\ensuremath{\mathsf{SVM}}$: is better for not too large dataset with high dimension
- Deep Neural Network : for complex pattern recognition (e.g. image or speech processing)

• Not enough data \rightarrow data augmentation (example : image cropping/rotating/...)

- Not enough data \rightarrow data augmentation (example : image cropping/rotating/...)
- Unbalanced classes in data (example : unbalanced representation of negative vs. positive examples) \rightarrow undersample or oversample

- Not enough data \rightarrow data augmentation (example : image cropping/rotating/...)
- Unbalanced classes in data (example : unbalanced representation of negative vs. positive examples) \rightarrow undersample or oversample
- **Outliers** : points far from the majority \rightarrow some model classes are less susceptible : decision trees

Summary

- Supervised learning is learning on labelled datasets
- Regression is learning a function with infinite output values
- Classification is learning a function with finite output values
- Linear/Logistic regression is a simple yet powerful model class for supervised learning
- **Deep Neural Networks** are computation graphs composed of units made of a non-linear and a linear function
- **Deep learning** is well suited for visual object recognition, speech recognition, natural language processing and reinforcement learning

- Artificial Intelligence : A Modern Approach, Stuart Russell and Peter Norvig
- Lecture of Didier Lime (2022-2023)
- Lecture of Kilian Weinberger : https://courses.cis.cornell.edu/cs4780/2017sp/