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Learning

“An agent is learning if it improves its performance after making observations about the

world.”, S. Russell and P. Norvig, Artificial Intelligence – A Modern Approach

Induction
specific observations → general rules

Deduction
general axioms → specific propositions

(guaranteed to be correct)

Example
the sun rose every morning in the past →
the sun will rise tomorrow

Example
all squirrels are mortal and Scrat is a

squirrel → Scrat is mortal

1/42



Learning

“An agent is learning if it improves its performance after making observations about the

world.”, S. Russell and P. Norvig, Artificial Intelligence – A Modern Approach

Induction
specific observations → general rules

̸=
Deduction
general axioms → specific propositions

(guaranteed to be correct)

Example
the sun rose every morning in the past →
the sun will rise tomorrow

Example
all squirrels are mortal and Scrat is a

squirrel → Scrat is mortal

1/42



Learning

“An agent is learning if it improves its performance after making observations about the

world.”, S. Russell and P. Norvig, Artificial Intelligence – A Modern Approach

Induction
specific observations → general rules

̸=
Deduction
general axioms → specific propositions

(guaranteed to be correct)

Example
the sun rose every morning in the past →
the sun will rise tomorrow

Example
all squirrels are mortal and Scrat is a

squirrel → Scrat is mortal

1/42



Forms of learning

Parameters

• component to be improved

• prior knowledge → model

• data and feedback

Components

• A direct mapping from conditions on the

current state to actions

• A means to infer relevant properties of the

world from the percept sequence

• Information about the way the world

evolves and about the results of possible

actions

• Utility information indicating the

desirability of world states

• . . .
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Forms of learning

Data
(x1, y1), (x2, y2), · · · ∈ X × Y

• Classification : Y is finite (e.g.

{sunny , cloudy , rainy} or {true, false})
• Regression : Y is infinite (e.g. N)

Feedback

• Supervised learning : the agent observes

input-output pairs (x , y) and learn

y = f (x)

• Unsupervised learning : the agent learns

pattern from inputs

• Reinforcement learning : the agent

learns from a serie of reinforcements :

rewards and punishments
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Supervised Learning



Supervised Learning - framework

Data set
(x1, y1), (x2, y2), . . . (xN , yN) ∈ X × Y

Function to learn
y = f (x) → hypothesis h ∼ f

Stationarity assumption

• P(Ej) = P(Ej+1) = P(Ej+2) = . . . : each example has the same prior probability

distribution

• P(Ej) = P(Ej |Ej−1,Ej−2, . . . ) : each example is independent from previous examples

↪→ independent and identically distributed
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Model and dataset

Model

• hypothesis space H =

model class

• hypothesis h ∈ H =

model

• hyperparameters :

parameters of the

model class (e.g :

degree for polynomial)

Train and Evaluate
Learn with part of the data and evaluate with the rest :

• training set : to train candidate models ( ̸= model classes

and ̸= hyperparameters)

• validation set : to evaluate candidate models and select the

best

• test set : to evaluate the selected model

k-fold cross-validation

• split the training set into k subsets

• iterate the three steps for all i ∈ [1, k] :

• take subset i out

• train with k − 1 joint subsets

• validate with the subset i

6/42



Model and dataset

Model

• hypothesis space H =

model class

• hypothesis h ∈ H =

model

• hyperparameters :

parameters of the

model class (e.g :

degree for polynomial)

Train and Evaluate
Learn with part of the data and evaluate with the rest :

• training set : to train candidate models ( ̸= model classes

and ̸= hyperparameters)

• validation set : to evaluate candidate models and select the

best

• test set : to evaluate the selected model

k-fold cross-validation

• split the training set into k subsets

• iterate the three steps for all i ∈ [1, k] :

• take subset i out

• train with k − 1 joint subsets

• validate with the subset i

6/42



Model and dataset

Model

• hypothesis space H =

model class

• hypothesis h ∈ H =

model

• hyperparameters :

parameters of the

model class (e.g :

degree for polynomial)

Train and Evaluate
Learn with part of the data and evaluate with the rest :

• training set : to train candidate models ( ̸= model classes

and ̸= hyperparameters)

• validation set : to evaluate candidate models and select the

best

• test set : to evaluate the selected model

k-fold cross-validation

• split the training set into k subsets

• iterate the three steps for all i ∈ [1, k] :

• take subset i out

• train with k − 1 joint subsets

• validate with the subset i

6/42



Model and dataset

Model

• hypothesis space H =

model class

• hypothesis h ∈ H =

model

• hyperparameters :

parameters of the

model class (e.g :

degree for polynomial)

Train and Evaluate
Learn with part of the data and evaluate with the rest :

• training set : to train candidate models ( ̸= model classes

and ̸= hyperparameters)

• validation set : to evaluate candidate models and select the

best

• test set : to evaluate the selected model

k-fold cross-validation

• split the training set into k subsets

• iterate the three steps for all i ∈ [1, k] :

• take subset i out

• train with k − 1 joint subsets

• validate with the subset i

6/42



Model and dataset

Model

• hypothesis space H =

model class

• hypothesis h ∈ H =

model

• hyperparameters :

parameters of the

model class (e.g :

degree for polynomial)

Train and Evaluate
Learn with part of the data and evaluate with the rest :

• training set : to train candidate models ( ̸= model classes

and ̸= hyperparameters)

• validation set : to evaluate candidate models and select the

best

• test set : to evaluate the selected model

k-fold cross-validation

• split the training set into k subsets

• iterate the three steps for all i ∈ [1, k] :

• take subset i out

• train with k − 1 joint subsets

• validate with the subset i

6/42



Model and dataset

Model

• hypothesis space H =

model class

• hypothesis h ∈ H =

model

• hyperparameters :

parameters of the

model class (e.g :

degree for polynomial)

Train and Evaluate
Learn with part of the data and evaluate with the rest :

• training set : to train candidate models ( ̸= model classes

and ̸= hyperparameters)

• validation set : to evaluate candidate models and select the

best

• test set : to evaluate the selected model

k-fold cross-validation

• split the training set into k subsets

• iterate the three steps for all i ∈ [1, k] :

• take subset i out

• train with k − 1 joint subsets

• validate with the subset i

6/42



Model and dataset

Model

• hypothesis space H =

model class

• hypothesis h ∈ H =

model

• hyperparameters :

parameters of the

model class (e.g :

degree for polynomial)

Train and Evaluate
Learn with part of the data and evaluate with the rest :

• training set : to train candidate models ( ̸= model classes

and ̸= hyperparameters)

• validation set : to evaluate candidate models and select the

best

• test set : to evaluate the selected model

k-fold cross-validation

• split the training set into k subsets

• iterate the three steps for all i ∈ [1, k] :

• take subset i out

• train with k − 1 joint subsets

• validate with the subset i

6/42



Model and dataset

Model

• hypothesis space H =

model class

• hypothesis h ∈ H =

model

• hyperparameters :

parameters of the

model class (e.g :

degree for polynomial)

Train and Evaluate
Learn with part of the data and evaluate with the rest :

• training set : to train candidate models ( ̸= model classes

and ̸= hyperparameters)

• validation set : to evaluate candidate models and select the

best

• test set : to evaluate the selected model

k-fold cross-validation

• split the training set into k subsets

• iterate the three steps for all i ∈ [1, k] :

• take subset i out

• train with k − 1 joint subsets

• validate with the subset i
6/42



Evaluation

Loss function
y = f (x) and ŷ = h(x)

L(x , y , ŷ) = Utility(using y given x)− Utility(using ŷ given x) → simplification : L(y , ŷ)

example : For a spam filter, L(spam, nospam) = 1 and L(nospam, spam) = 10

Usual loss functions

• Absolute-value loss : L1(y , ŷ) = |y − ŷ |
• Squared-error loss : L2(y , ŷ) = (y − ŷ)2

• 0/1 loss : L0/1(y , ŷ) =

{
0 if y = ŷ

1 else

Generalization loss
GenLossL(h) =

∑
(x,y)

L(y , h(x))P(x , y)

Empirical loss

EmpLossL,E (h) =
∑

(x,y)∈E

L(y , h(x))
1

N

(with |E | = N)

Regularization
Ockham’s razor dictates to prefer simplicity

Cost(h) = EmpLoss(h) + λComplexity(h)

ĥ∗ = argmin
h∈H

Cost(h)
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example : For a spam filter, L(spam, nospam) = 1 and L(nospam, spam) = 10

Usual loss functions

• Absolute-value loss : L1(y , ŷ) = |y − ŷ |
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L(x , y , ŷ) = Utility(using y given x)− Utility(using ŷ given x) → simplification : L(y , ŷ)

example : For a spam filter, L(spam, nospam) = 1 and L(nospam, spam) = 10

Usual loss functions

• Absolute-value loss : L1(y , ŷ) = |y − ŷ |
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Learning failure

Realizability/Intractability

• Realizable : f ∈ H

• Computationally tractable : there exists algorithm to

explore H with reasonable amount of time/resources.

Dataset
f may be nondeterministic or noisy : different values of

f (x) for a same x

Underfitting/Overfitting

• Overfitting : when a function pays too much attention

to the particular data it is trained on → doesn’t

generalize well.

• Underfitting : when a function fails to find a pattern

in the data.

Bias-Variance tradeoff

• complex low-bias hypotheses

that fit the training data well

• simple low-variance

hypotheses that generalize

better

8/42



Learning failure

Realizability/Intractability

• Realizable : f ∈ H
• Computationally tractable : there exists algorithm to

explore H with reasonable amount of time/resources.

Dataset
f may be nondeterministic or noisy : different values of

f (x) for a same x

Underfitting/Overfitting

• Overfitting : when a function pays too much attention

to the particular data it is trained on → doesn’t

generalize well.

• Underfitting : when a function fails to find a pattern

in the data.

Bias-Variance tradeoff

• complex low-bias hypotheses

that fit the training data well

• simple low-variance

hypotheses that generalize

better

8/42



Learning failure

Realizability/Intractability

• Realizable : f ∈ H
• Computationally tractable : there exists algorithm to

explore H with reasonable amount of time/resources.

Dataset
f may be nondeterministic or noisy : different values of

f (x) for a same x

Underfitting/Overfitting

• Overfitting : when a function pays too much attention

to the particular data it is trained on → doesn’t

generalize well.

• Underfitting : when a function fails to find a pattern

in the data.

Bias-Variance tradeoff

• complex low-bias hypotheses

that fit the training data well

• simple low-variance

hypotheses that generalize

better

8/42



Learning failure

Realizability/Intractability

• Realizable : f ∈ H
• Computationally tractable : there exists algorithm to

explore H with reasonable amount of time/resources.

Dataset
f may be nondeterministic or noisy : different values of

f (x) for a same x

Underfitting/Overfitting

• Overfitting : when a function pays too much attention

to the particular data it is trained on → doesn’t

generalize well.

• Underfitting : when a function fails to find a pattern

in the data.

Bias-Variance tradeoff

• complex low-bias hypotheses

that fit the training data well

• simple low-variance

hypotheses that generalize

better

8/42



Learning failure

Realizability/Intractability

• Realizable : f ∈ H
• Computationally tractable : there exists algorithm to

explore H with reasonable amount of time/resources.

Dataset
f may be nondeterministic or noisy : different values of

f (x) for a same x

Underfitting/Overfitting

• Overfitting : when a function pays too much attention

to the particular data it is trained on → doesn’t

generalize well.

• Underfitting : when a function fails to find a pattern

in the data.

Bias-Variance tradeoff

• complex low-bias hypotheses

that fit the training data well

• simple low-variance

hypotheses that generalize

better

8/42



Learning failure

Realizability/Intractability

• Realizable : f ∈ H
• Computationally tractable : there exists algorithm to

explore H with reasonable amount of time/resources.

Dataset
f may be nondeterministic or noisy : different values of

f (x) for a same x

Underfitting/Overfitting

• Overfitting : when a function pays too much attention

to the particular data it is trained on → doesn’t

generalize well.

• Underfitting : when a function fails to find a pattern

in the data.

Bias-Variance tradeoff

• complex low-bias hypotheses

that fit the training data well

• simple low-variance

hypotheses that generalize

better

8/42



Learning failure

Realizability/Intractability

• Realizable : f ∈ H
• Computationally tractable : there exists algorithm to

explore H with reasonable amount of time/resources.

Dataset
f may be nondeterministic or noisy : different values of

f (x) for a same x

Underfitting/Overfitting

• Overfitting : when a function pays too much attention

to the particular data it is trained on → doesn’t

generalize well.

• Underfitting : when a function fails to find a pattern

in the data.

Bias-Variance tradeoff

• complex low-bias hypotheses

that fit the training data well

• simple low-variance

hypotheses that generalize

better 8/42



Model classes

• Decision trees

• Linear regression

• Linear/Logistic classification

• Support Vector Machines

• Neural Networks
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Linear Regression and

Classification



Univariate linear regression

x

y

Sample set
{(x1, y1), (x2, y2), . . . , (xN , yN)} ⊆ R× R

Hypothesis
hw⃗ (x) = w0 + w1x with w⃗ = (w0,w1)

Minimize loss
Normally distributed noise → L2 (Gauss)

Loss(hw⃗ ) =
N∑
j=1

L2(yj , hw⃗ (xj)) =
N∑
j=1

(yj − (w0 + w1xj))
2

Minimize L(w⃗) = Loss(hw⃗ )

Analytic solution
Show that the minimum of L(w⃗) is obtained for :

w1 =
(
∑

xj )(
∑

yj )−N(
∑

xjyj )

(
∑

xj )2−N(
∑

x2
j )

and w0 =
(
∑

yj )−w1(
∑

xj )
N
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Gradient descent

wi

L(wi)

Algorithm

wi ← wi − α
∂L(w⃗)

∂wi
with α the learning rate

Univariate gradient descent

w0 ← w0 + α

N∑

j=1

(yj − hw⃗ (xj))

w1 ← w1 + α

N∑

j=1

(yj − hw⃗ (xj))xj
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Multivariable

Sample set
{(x⃗1, y1), (x⃗2, y2), . . . , (x⃗N , yN)} ⊆ Rd × R

Hypothesis

hw⃗ (x⃗j) = w⃗ x⃗j =
d∑

i=0

wixji with :

• w⃗ = (w0,w1, . . . ,wd) ∈ Rd+1

• x⃗j = (xj1, xj2, . . . , xjd) ∈ Rd

• xj0 = 1

Gradient descent

wi ← wi − α

N∑

j=1

(yj − hw⃗ (x⃗j))xji

Analytic solution
X : matrix of inputs (each row is an x⃗j),

y : vector of outputs (each row is a yj)

L(w) = ∥X .w − y∥2

∇wL(w) = 2X⊤.(X .w − y) = 0

w∗ = (X⊤.X )−1.X⊤.y : normal equation
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Epoch poc poc

Batch gradient descent

wi ← wi − α
N∑
j=1

(yj − hw⃗ (x⃗j))xji (also called deterministic gradient descent)

Stochastic gradient descent (SGD)

1. select and remove a minibatch of m out of N training examples (randomly)

2. compute a step wi ← wi − α
m∑
j=1

(yj − hw⃗ (x⃗j))xji

3. iterate until no more training examples

Epoch
A step that covers all N training examples

Complete algorithm
Iterate E epochs until convergence.
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Regularization

Overfitting
In high-dimensional spaces, some irrelevant dimension might appear to be useful

Regularization
Cost(h) = EmpLoss(h) + λComplexity(h)

For linear functions

Complexity(hw⃗ ) = Lq(w⃗) =
d∑

i=0

|wi |q

Usually, we use q = 1 : L1 regularization → produces sparse model (remove attributes)
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Linear classification

x1

x2

Sample set
{(x⃗1, y1), (x⃗2, y2), . . . , (x⃗N , yN)} ⊆ Rd × {0, 1}

Hypothesis
The decision boundary is a linear separator.
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Hard threshold linear classifier

−8 −6 −4 −2 2 4 6 8

1

z

Threshold(z)

Threshold(z) =

{
0 if z < 0

1 else

Hypothesis
hw⃗ (x⃗j) = Threshold(w⃗ .x⃗j) with w⃗ ∈ Rd+1

Perceptron learning rule

wi ← wi + α(yj − hw⃗ (x⃗j))xji

Issue
May not converge if data is not clearly separable

(without noise)

Dynamic learning rate
α(t) = c

c+t (decrease with time elapsing)

with c a fairly large constant

Technically, we require that :
∞∑
t=1

α(t) =∞ and
∞∑
t=1

α(t)2 <∞
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Logistic linear classifier

−8 −6 −4 −2 2 4 6 8

1

z

Logistic(z)

Logistic(z) =
1

1 + e−(z−µ)/s

µ : location parameter (here µ = 0)

s : scale parameter (here s = 1)

Hypothesis
hw⃗ (x⃗j) = Logistic(w⃗ .x⃗j) with w⃗ ∈ Rd+1

Why though ?
Logistic function is differentiable in 0 !

Gradient descent
Find the logistic learning rule from the general formula of

gradient descent : wi ← wi + α∂L(w⃗)
∂wi

(for a single

example (x⃗ , y)).

Logistic learning rule

wi ← wi + α(yj − hw⃗ (x⃗j))hw⃗ (x⃗j)(1− hw⃗ (x⃗j))xji
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The kernel trick

What if ..
the dataset is not linearly

separable ?

x1

x2

Idea
Map into another space (generally higher dimensional) where

it is linearly separable : x⃗ 7→ ϕ(x⃗)

Change the space
Find a (possibly higher dimensional) space in which this

dataset is linearly separable.

Kernel function

K (x⃗k , x⃗j) = ϕ(x⃗k).ϕ(x⃗j)

Reformulation

We can show that w⃗ =
N∑

k=1

δk x⃗k then

hw⃗ (x⃗j) =
N∑

k=1

δk x⃗k .x⃗j 7→
N∑

k=1

δkϕ(x⃗k).ϕ(x⃗j) =
N∑

k=1

δkK (x⃗k , x⃗j)
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The kernel trick

Linear regression in the new space

hw⃗ (ϕ(x⃗j)) =
N∑

k=1

δkK (x⃗k , x⃗j)

Kernel matrix
K ∈ RN × RN s.t Kij = K (x⃗i , x⃗j)

Algorithm
We compute δ⃗ instead of w⃗ :

δi ← δi + αγi

Popular kernel functions

• Linear : K (x⃗ , z⃗) = x⃗ .z⃗

• Polynomial : K (x⃗ , z⃗) = (1 + x⃗ .z⃗)d

• Radial Basis Function (RBF) :

K (x⃗ , z⃗) = e
−∥⃗x−z⃗∥2

σ2

• Laplacian Kernel : K (x⃗ , z⃗) = e
−∥⃗x−z⃗∥

σ

• Sigmöıd Kernel : K (x⃗ , z⃗) = tanh(ax⃗ .z⃗ + b)
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Linear Regression and Classification - Summary

• Linear regression is in pratice computed with gradient descent

• A linear classifier with a hard threshold is called a perceptron and can be learnt with

gradient descent if data is linearly separable

• A decreasing learning rate improve convergence

• Logistic regression replace the hard threshold by the logistic function

• The kernel trick transforms input data to a higher-dimensional space where a linear

separator may exists

To go further . . .

• Other non-parametric models : nearest neighbors and locally weighted regression

• Support Vector Machines

20/42



Linear Regression and Classification - Summary

• Linear regression is in pratice computed with gradient descent

• A linear classifier with a hard threshold is called a perceptron and can be learnt with

gradient descent if data is linearly separable

• A decreasing learning rate improve convergence

• Logistic regression replace the hard threshold by the logistic function

• The kernel trick transforms input data to a higher-dimensional space where a linear

separator may exists

To go further . . .

• Other non-parametric models : nearest neighbors and locally weighted regression

• Support Vector Machines

20/42



Linear Regression and Classification - Summary

• Linear regression is in pratice computed with gradient descent

• A linear classifier with a hard threshold is called a perceptron and can be learnt with

gradient descent if data is linearly separable

• A decreasing learning rate improve convergence

• Logistic regression replace the hard threshold by the logistic function

• The kernel trick transforms input data to a higher-dimensional space where a linear

separator may exists

To go further . . .

• Other non-parametric models : nearest neighbors and locally weighted regression

• Support Vector Machines

20/42



Linear Regression and Classification - Summary

• Linear regression is in pratice computed with gradient descent

• A linear classifier with a hard threshold is called a perceptron and can be learnt with

gradient descent if data is linearly separable

• A decreasing learning rate improve convergence

• Logistic regression replace the hard threshold by the logistic function

• The kernel trick transforms input data to a higher-dimensional space where a linear

separator may exists

To go further . . .

• Other non-parametric models : nearest neighbors and locally weighted regression

• Support Vector Machines

20/42



Linear Regression and Classification - Summary

• Linear regression is in pratice computed with gradient descent

• A linear classifier with a hard threshold is called a perceptron and can be learnt with

gradient descent if data is linearly separable

• A decreasing learning rate improve convergence

• Logistic regression replace the hard threshold by the logistic function

• The kernel trick transforms input data to a higher-dimensional space where a linear

separator may exists

To go further . . .

• Other non-parametric models : nearest neighbors and locally weighted regression

• Support Vector Machines

20/42



Linear Regression and Classification - Summary

• Linear regression is in pratice computed with gradient descent

• A linear classifier with a hard threshold is called a perceptron and can be learnt with

gradient descent if data is linearly separable

• A decreasing learning rate improve convergence

• Logistic regression replace the hard threshold by the logistic function

• The kernel trick transforms input data to a higher-dimensional space where a linear

separator may exists

To go further . . .

• Other non-parametric models : nearest neighbors and locally weighted regression

• Support Vector Machines

20/42



Linear Regression and Classification - Summary

• Linear regression is in pratice computed with gradient descent

• A linear classifier with a hard threshold is called a perceptron and can be learnt with

gradient descent if data is linearly separable

• A decreasing learning rate improve convergence

• Logistic regression replace the hard threshold by the logistic function

• The kernel trick transforms input data to a higher-dimensional space where a linear

separator may exists

To go further . . .

• Other non-parametric models : nearest neighbors and locally weighted regression

• Support Vector Machines

20/42



Deep Learning



Why is deep learning successful ?

Linear regression

x y

Shallow
Short computation

path

Decision list

x

y

No interaction
No complex interaction

between inputs

Deep learning network

x y

Deep
Long computation path and complex

interactions between many inputs
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Deep Learning

Type of networks

• feedforward network : directed acyclic

graph

• recurrent network : loops computing

intermediate or final output

Unit (a.k.a. Artificial Neuron)

unitjai

...

...

bj bj = gj(
∑
i

wi,jai)

• gj : activation function of unit j

• w⃗j : weights of unit j

Activation functions

• Logistic or Sigmoid : σ(x) = 1
1+e−x

• ReLU (Rectified Linear Unit) :

ReLU(x) = max(0, x)

• Softplus (smooth ReLU) :

softplus(x) = log(1 + ex)

• tanh : tanh(x) = e2x−1
e2x+1 (= 2σ(2x)− 1)

Universal approximation theorem
A network with just two layers (one non-linear

and one linear) can approximate any continuous

function to an arbitrary degree of accuracy.
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An example

Example

x1

x2

u3

u4

u5 y

w1,3

w
1,4

w2,
3

w2,4

w
3,5

w4,5

Forward computation

ŷ = g5(w0,5 + w3,5a3 + w4,5a4)

ŷ = g5(w0,5 + w3,5g3(w0,3 + w1,3x1 + w2,3x2)

+ w4,5g4(w0,4 + w1,4x1 + w2,4x2))

hW (x) = g (2)(W (2)g (1)(W (1)x))

Gradient descent
Loss(hW ) = L2(y , hW (x)) = (y − ŷ)2

Output layer
∂Loss(hW )

∂w3,5
= . . .

?

−2(y − ŷ)g ′
5(w0,5 + w3,5a3 + w4,5a4)a3 = ∆5a3

Hidden layer
∂Loss(hW )

∂w1,3
= . . .

?

∆5w3,5g
′
3(w0,3 + w1,3x1 + w2,3x2)x1 = ∆3x1

Vanishing gradient
When g ′

i (ini ) ≈ 0 → learning stops
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ŷ = g5(w0,5 + w3,5a3 + w4,5a4)
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ŷ = g5(w0,5 + w3,5g3(w0,3 + w1,3x1 + w2,3x2)

+ w4,5g4(w0,4 + w1,4x1 + w2,4x2))

hW (x) = g (2)(W (2)g (1)(W (1)x))

Gradient descent
Loss(hW ) = L2(y , hW (x)) = (y − ŷ)2
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i (ini ) ≈ 0 → learning stops
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Learning algorithms - Backpropagation

Backpropagation

h

f

g

j

k

∂L∂f
h

←−−

∂L

∂gh

←−−

∂L

∂hj

←−−
∂L∂h
k

←−−

hj : message from node h to node j

(hj = h(fh, gh))

Contribution of h on L

∂L

∂h
=

∂L

∂hj
+

∂L

∂hk

Backpropagate
∂L

∂fh
=

∂L

∂h

∂h

∂fh
and

∂L

∂gh
=

∂L

∂h

∂h

∂gh

• ∂L
∂h : already computed at previous step

• ∂h
∂fh

: specific to the type of node h

Until ..
.. we reach a node corresponding to a

parameter w : ∂L
∂w → update w
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Learning algorithms - Enhancements

General gradient descent
W ←W − α∇W L(W )

Batches

• When W dimensionality and the training

set are very large → minibatch

• Gradient contributions of each batch are

independent → parallel computing (GPU

or TPU)

Decreasing learning rate
α(t) decreasing function → find the right

schedule

Gradient has high variance on small batches
and thus may point to a wrong direction ..

• increase minibatch size as training

proceeds

• momemtum : keep a running average of

the gradient

Batch normalization
For each example i of the minibatch, replace

each output zi of each node by

ẑi = γ zi−µ√
ε+σ2

+ β (µ : mean, σ : standard

deviation, within the minibatch) (ε > 0) (γ and

β : new parameters)
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ẑi = γ zi−µ√
ε+σ2

+ β (µ : mean, σ : standard

deviation, within the minibatch) (ε > 0) (γ and

β : new parameters)

25/42



Learning algorithms - Enhancements

General gradient descent
W ←W − α∇W L(W )

Batches

• When W dimensionality and the training

set are very large → minibatch

• Gradient contributions of each batch are

independent → parallel computing (GPU

or TPU)

Decreasing learning rate
α(t) decreasing function → find the right

schedule

Gradient has high variance on small batches
and thus may point to a wrong direction ..

• increase minibatch size as training

proceeds

• momemtum : keep a running average of

the gradient

Batch normalization
For each example i of the minibatch, replace

each output zi of each node by
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Layers

x y

input
layer

hidden
layers

output
layer

Hidden layer

• 1985-2010 : sigmoid or tanh

• now : ReLU and softplus more

popular (vanishing gradient)

Input encoding

• generally straighforward : {⊤,⊥} → {0, 1}, R→ R,
log scale for big magnitudes, . . .

• categories → one-hot encoding

• images → array-like structure to represent

adjacency

Output encoding

• multiclass → one-hot encoding : probability to be in

the class k

softmax layer : softmax(i⃗n)k = e ink∑
k′

e ink′

• regression → linear layer
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Cross-entropy

Multiclass Classification
Interpret ŷ as probabilities

Cross-entropy
Measure of dissimilarity between two

distributions P and Q :

H(P,Q) = −Ez∼P(z)(logQ(z)) =

−
∫

P(z) logQ(z)dz

For classification

• P : the true distribution over training

examples

• Q : the predictive hypothesis

Binary classification

• probability of output y = 1 : qy=1 = ŷ

• probability of output y = 0 : qy=0 = 1− ŷ

H(p, q) = −∑
i

pi log qi =

−y log ŷ − (1− y) log(1− ŷ)

Cross-entropy loss

L(w) = 1
N

N∑
k=1

H(pk , qk)

L(w) = − 1

N

N∑

k=1

(yk log ŷk + (1− yk) log(1− ŷk))
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Interpret ŷ as probabilities

Cross-entropy
Measure of dissimilarity between two

distributions P and Q :

H(P,Q) = −Ez∼P(z)(logQ(z)) =

−
∫

P(z) logQ(z)dz

For classification

• P : the true distribution over training

examples

• Q : the predictive hypothesis

Binary classification

• probability of output y = 1 : qy=1 = ŷ
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Convolutional Networks

Image specificities

• adjacency → units should receive

input from a small local region

• space invariance → units should

share their weights

Convolution

• kernel : pattern of weights that is

replicated

• convolution : apply a kernel k of size l :

z = x ∗ k → zi =
l∑

j=1

kjxj+i−(l+1)/2

1D example
x0

x1

x2

x3

x4

x5

x6

w
1

w2

w3
z1

w
1

w2

w3
z3

w
1

w2

w3
z5

size: l = 3
stride: s = 2

2D pattern
Pooling

• average pooling : k = ( 1l , . . . ,
1
l )

(if s > 1 : downsampling)

• max-pooling :

zi = max1≤j≤l(xj+i−(l+1)/2)
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Tensor

Tensor
Multidimensional arrays of any dimension :

• 1D : vector

• 2D : matrix

• . . .

Example
input

−→ output

minibatch of 64 images RGB 256x256

96 kernels 5x5x3 with s = 2 feature map

256x256x3x64

−→ 128x128x96x64
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Residual Networks

Idea
To avoid vanishing gradient in very deep networks → keep information of the previous layer

Residual

Instead of z (i) = h(z (i−1)) = g (i)(W (i)z (i−1)) → z (i) = g (i)
r (z (i−1) + f (z (i−1)))

• g
(i)
r : activation function

• f typically a linear + non-linear function : f (z) = V g(Wz)

Disable a layer
We can make layers that can be disabled by setting V = 0 : if gr = ReLU (at least for layers

i − 1 and i), z (i−1) = ReLU(in(i−1)) then

z (i) = ReLU(z (i−1)) = ReLU(ReLU(in(i−1))) = ReLU(in(i−1)) = z (i−1)
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Recurrent Networks - Basic

Time series
A sequence of inputs x1, . . . , xT and

observed outputs y1, . . . , yT .

Signal or Text processing

• time series → we need a memory z

• time invariance → share weights at each time step

Basic RNN

x z

•
∆

y
wx,z wz,y

wz,z

Forward
zt = gz(wz,zzt−1 + wx,zxt)

and ŷt = gy (wy ,zzt)

z0

z1x1

w z,
z

y1
wx,z wz,y

z2x2

w z,
z

y2
wx,z wz,y

. . .

w z,
z

xT zT yT
wx,z wz,y

Backpropagation

∂L
∂wz,z

=
T∑
t=1
−2(yt− ŷt)g ′

y (iny ,t)wz,y
∂zt
wz,z

∂zt
∂wz,z

= g ′
z(inz,t)(zt−1 + wz,z

∂zt−1

wz,z
)

Issue
Gradient at step T will include terms

proportional to wz,z

T∏
t=1

g ′
z(inz,t)

↪→ vanishing (wz,z < 1) or exploding

(wz,z > 1) gradient
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and ŷt = gy (wy ,zzt)

z0

z1x1

w z,
z

y1
wx,z wz,y

z2x2

w z,
z

y2
wx,z wz,y

. . .

w z,
z

xT zT yT
wx,z wz,y

Backpropagation

∂L
∂wz,z

=
T∑
t=1
−2(yt− ŷt)g ′
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Recurrent Networks - LSTM

Long Short-Term Memory (LSTM)

• memory cell c : copied at each time step

Gating units :

• forget gate f : elements of the memory

to forget/remember

• input gate i : elements of the memory to

update with new info from the inputs

• output gate o : elements of the memory

to transfer to the short-term memory

• short-term memory z : as for basic RNN

Gating units

• ft = σ(Wx,f xt + Wz,f zt−1)

• it = σ(Wx,ixt + Wz,izt−1)

• ot = σ(Wx,oxt + Wz,ozt−1)

• ct = ct−1⊙ ft + it⊙ tanh(Wx,cxt +Wz,czt−1)

• zt = tanh(ct)⊙ ot
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Improve generalization – Design the architecture

Specialized architecture

• Convolutional : images

• Recurrent : text and audio signals

Neural architecture search
Optimisation problem with
hyperparameters : depth, width,
connectivity, . . .

• Grid search

• Evolutionary algorithm : recombination (joining

parts of two networks) + mutation

(adding/removing a layer or changing a parameter

value)

• Hill climbing with mutations

• Reinforcement learning

• Bayesian optimization

• Gradient descent

Empirical result
For a fixed number of weights : the deeper the

better

Train and evaluate
Reduce time of estimation : train on test set +
evaluate on validation set

• Smaller training set

• Fewer batches + prediction of improvement

• Reduced version of the network

• Focus on subgraph

• Learn heuristic evaluation function
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• Focus on subgraph

• Learn heuristic evaluation function
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Improve generalization

Weight decay

Regularization with penalty λ
∑

i,j

W 2
i,j , typically λ = 10−4

↪→ Encourage small weights

(to stay in the linear part for sigmoid activation)

Dropout
At each step of training deactivate a random set of units

• Encourage the detection of more features

• Make it more robust to noise
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Neural Network Applications

Vision
Deep convolutional networks (since 1990s)

ImageNet competition : classification 1200000 images in 1000 categories

In 2012, AlexNet : error rate < 15.3% (2nd : 25%) (now, error rate < 2%)

Natural Langage processing
Translation problems :

• Two networks : from L1 to IR + from IR to L2

• One end-to-end network ← performs better

Speech recognition : representation of words with high-dimensional vectors → word embeddings

Reinforcement learning
Optimise the sum of future rewards : learn a value function, Q-function, policy, . . .→ deep

reinforcement learning

DeepMind : DQN an Atari-playing agent (2013) and AlphaGo (2014)

35/42



Neural Network Applications

Vision
Deep convolutional networks (since 1990s)

ImageNet competition : classification 1200000 images in 1000 categories

In 2012, AlexNet : error rate < 15.3% (2nd : 25%) (now, error rate < 2%)

Natural Langage processing
Translation problems :

• Two networks : from L1 to IR + from IR to L2

• One end-to-end network ← performs better

Speech recognition : representation of words with high-dimensional vectors → word embeddings

Reinforcement learning
Optimise the sum of future rewards : learn a value function, Q-function, policy, . . .→ deep

reinforcement learning

DeepMind : DQN an Atari-playing agent (2013) and AlphaGo (2014)

35/42



Neural Network Applications

Vision
Deep convolutional networks (since 1990s)

ImageNet competition : classification 1200000 images in 1000 categories

In 2012, AlexNet : error rate < 15.3% (2nd : 25%) (now, error rate < 2%)

Natural Langage processing
Translation problems :

• Two networks : from L1 to IR + from IR to L2

• One end-to-end network ← performs better

Speech recognition : representation of words with high-dimensional vectors → word embeddings

Reinforcement learning
Optimise the sum of future rewards : learn a value function, Q-function, policy, . . .→ deep

reinforcement learning

DeepMind : DQN an Atari-playing agent (2013) and AlphaGo (2014)
35/42



AlexNet architecture

Architecture of Alexnet. From left to right (input to output) five convolutional layers with Max Pooling

after layers 1,2, and 5, followed by a three layer fully connected classifier (layers 6-8). The number of

neurons in the output layer is equal to the designed number of output classes.
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Deep Learning - Summary

• Neural Networks = computation graph composed of parameterized linear-threshold units

• A neural network can represent complex nonlinear functions

• Backpropagation = gradient descent for neural networks

• Deep learning is suited for visual object recognition, speech recognition, natural language

processing and reinforcement learning

• Convolutional networks → data with grid topology (e.g. images)

• Recurrent networks → sequence data (e.g. language modeling and machine translation)

To go further . . .

• Transfer learning : re-train a pretrained network for a specific task

• Generative Adversarial Networks : a generator network + a discriminator network
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Model Selection and

Optimisation



Ensemble learning

Learn several hypothesis h1, h2, . . . , hK and use a combination h∗ = {h1, h2, . . . , hK}
• reduce bias of each base model by combining

• reduce variance of learning by voting

Bagging

h∗(x) =
1

K

K∑

i=1

hi (x) : voting in the same model class

Example : random forests

Stacking
Train a new hypothesis on validation set augmented with

the predictions of h1, h2, . . . , hK

• learn a weight for each hypothesis hi : trust

• we can add metadata (e.g. time to compute) and

stack several layers

Boosting

1. Boost incorrectly classified training

example by increasing its weight

(number of occurences), iterate after

learning each hi

2. Weighted voting : h∗(x) =
K∑
i=1

zihi (x)

Gradient boosting
Boosting with gradient descent to find the

weight on training examples
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Model Selection

• Random Forests : lot of categorical features and many irrelevant

• Non-parametric models : lot of data and no prior knowledge → resulting hypothesis are

expensive to compute

• Logistic Regression performs similarly than SVM

• SVM : is better for not too large dataset with high dimension

• Deep Neural Network : for complex pattern recognition (e.g. image or speech processing)
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Data enhancement

• Not enough data → data augmentation (example : image cropping/rotating/. . .)

• Unbalanced classes in data (example : unbalanced representation of negative vs. positive

examples) → undersample or oversample

• Outliers : points far from the majority → some model classes are less susceptible :

decision trees
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Summary



Summary

• Supervised learning is learning on labelled datasets

• Regression is learning a function with infinite output values

• Classification is learning a function with finite output values

• Linear/Logistic regression is a simple yet powerful model class for supervised learning

• Deep Neural Networks are computation graphs composed of units made of a non-linear

and a linear function

• Deep learning is well suited for visual object recognition, speech recognition, natural

language processing and reinforcement learning
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Sources

• Artificial Intelligence : A Modern Approach, Stuart Russell and Peter Norvig

• Lecture of Didier Lime (2022-2023)

• Lecture of Kilian Weinberger : https://courses.cis.cornell.edu/cs4780/2017sp/
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