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Content

• Lecture + tutorials : 12h

• Lab : 20h

• Exam : 2h
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Content

• Designing Circuit

• Analog circuit Logic circuit

• Boolean Algebra

• Description Language : VHDL
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Boolean Algebra



Quick definition

Logic Variable
Variable that can take 2 values (”true” or ”false”)

• ”false” is noted 0

• ”true” is noted 1

Logic Function
Function on logic variables

• input: some logic variables;

• output: one logic value.

Example
With only 1 input:

constant constant identity negation

A f (A) = 0 f (A) = 1 f (A) = A f (A) = ¬A
0 0 1 0 1

1 0 1 1 0
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Logic Gates

USA Europe Truth table

A S A 1 S
A S = A

0 0

1 1

NOT
A S A 1 S

A S = ¬A
0 1

1 0
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Logic Gates

AND

A
B S A

B
&

S

A B S = A.B

0 0 0

0 1 0

1 0 0

1 1 1

NAND

A
B S A

B
&

S

A B S = A.B

0 0 1

0 1 1

1 0 1

1 1 0

OR

A
B S A

B
≥ 1

S

A B S = A + B

0 0 0

0 1 1

1 0 1

1 1 1

NOR

A
B S A

B
≥ 1

S

A B S = A + B

0 0 1

0 1 0

1 0 0

1 1 0

XOR

A
B S A

B
= 1

S

A B S = A ⊕ B

0 0 0

0 1 1

1 0 1

1 1 0

XNOR

A
B S A

B
= 1

S

A B S = A ⊕ B

0 0 1

0 1 0

1 0 0

1 1 1
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Some properties

Commutativity

• A.B = B.A

• A + B = B + A

Associativity

• A.(B.C) = (A.B).C

• A + (B + C) = (A + B) + C

Neutral element

• A.1 = A

• A + 0 = A

Absorbing element

• A.0 = 0

• A + 1 = 1

Involution

• A = A

Inverse element

• A.A = 0

• A + A = 1

Idempotence

• A.A = A

• A + A = A

Distributivity

• A.(B + C) = A.B + A.C

Morgan Laws

• A.B = A + B

• A + B = A.B
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Some properties

Consequence
All logical functions can be built with NAND gate (or NOR gate).
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Exercises

Exercise
Simplify the following expressions:

1. A + A.B

2. A.(A + B)

3. (A + B).(A + B)
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2. A.(A + B) = A.A + A.B = A + A.B = A

3. (A + B).(A + B)

= A.A + A.B + B.A + B.B = A + A.B + A.B + 0 = A.(1 + B + B) = A.1 = A
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Exercises

Exercise
Let’s build a one bit adder with a carry.

A

B

Half

Adder

R

C

1. Write the truth table of the adder

2. Deduce the logical function R = f (A,B)

3. Deduce the logical function C = g(A,B)

4. Draw the full circuit

1.

A B R C

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

2. R = A⊕ B

3. C = A.B

4.

A
B R

C
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Exercises

Flip-flop (or latch)
A flip-flop is a circuit that has two stables states. It can be used to store information.

Exercise
Let’s build a simple SR latch.

S

R

SR

Latch

Q

Q

S R Qnext

0 0 Q Memory

0 1 0 Reset

1 0 1 Set

1 1 (prohibited)

1. Write the truth table Qnext = f (S,Q)

2. Deduce the logical function Qnext = f (S,Q)

3. Write the logical function Qnext = g(S,Q)

4. Write the truth table Qnext = h(R,Q)

5. Deduce the logical function Qnext = h(R,Q)

6. Draw the full circuit

1.

S Q Qnext

0 0 0

0 1 1

1 0 1

1 1 1

2. Qnext = S + Q

3. Qnext = S + Q

4.

R Q Qnext

0 0 1

0 1 0

1 0 0

1 1 0

5. Qnext = R + Q

6.

S

R

Q

Q
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VHDL



VHDL

Introduction



About VHDL

VHDL

• Hardware Description Language: describes the behavior of the system from which

the physical circuit can then be implemented.

• VHDL = ”VHSIC Hardware Description Language”. VHSIC = ”Very High Speed

Integrated Circuits”.

• Created in the 1980s.

• Two main applications: programmable logic devices (CPLD, FPGA) and design

of integrated circuit (ASIC)
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About VHDL

VHDL description
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About VHDL

VHDL description

ASIC
Definitiv

e
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About VHDL

VHDL description

ASIC
Definitiv

e

FPGA

Temporary
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EDA Tools

EDA Tools

• Electronic Design Automation tools: synthesis, implementation and simulation of

VHDL.

• Some tools are offered as part of vendor’s design suite: Altera, Xilinx, ...

• During this course we will use Xilinx’s Vivado suite, for Xilinx’s CPLD/FPGA

chips
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Translation of VHDL Code into a Circuit

a

b

cin

Full

Adder

s

cout

a b cin s cout

0 0 0 0 0

0 1 0 1 0

1 0 0 1 0

1 1 0 0 1

0 0 1 1 0

0 1 1 0 1

1 0 1 0 1

1 1 1 1 1
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Translation of VHDL Code into a Circuit

s = a⊕ b ⊕ cin

cout = a.b + a.cin + b.cin

ENTITY full_adder IS

PORT (a, b, cin: IN BIT;

s, cout: OUT BIT);

END full_adder;

------------------------------------

ARCHITECTURE dataflow OF full_adder

IS

BEGIN

s <= a XOR b XOR cin;

cout <= (a AND b) OR (a AND cin)

OR

(b AND cin);

END dataflow;

Circuit ?
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Design examples

• Adders

• Counters

• Comparators

• ALU

• MAC unit

• Decoder/Encoder

• RAM, ROM

• Digital filters

• State machine

• Microprocessor

• Neural network

• . . .
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Fundamental sections

LIBRARY

declarations

ENTITY

ARCHITECTURE

Input/Output

specification

Behaviour

description

Basic

VHDL code
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Library declarations

LIBRARY library_name;

USE library_name.package_name.package_parts;
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Library declarations

Three packages are usually needed in a design:

LIBRARY ieee; -- A semi-colon (;) indicates

USE ieee.std_logic_1164.all; -- the end of a statement or

LIBRARY std; -- declaration , while a double

USE std.standard.all; -- dash (--) indicates a comment.

LIBRARY work;

USE work.all;

Their purposes:

• ieee.std logic 1164: specifies the STD LOGIC and STD ULOGIC datatypes;

• std: resource library for the VHDL design environment (loaded by default);

• work: current working library (loaded by default).
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Entity

An ENTITY is a list with specifications of all input and output pins (PORT) of the circuit.

ENTITY entity_name IS

PORT (

port_name : signal_mode signal_type;

port_name : signal_mode signal_type;

...);

END entity_name;

ENTITY nand_gate IS

PORT (a, b : IN BIT;

s : OUT BIT);

END nand_gate;

a
b

s
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Architecture

The ARCHITECTURE is a description of how the circuit should behave (function)

ARCHITECTURE architecture_name OF entity_name IS

[declarations]

BEGIN

(code)

END architecture_name;

• declarative part: where signals and constants

(among others) are declared

• code part: behaviour is described

ARCHITECTURE myarch OF nand_gate IS

BEGIN

s <= a NAND b;

END myarch;

a
b

s
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Example

a
b

clk

DFF q

ENTITY example IS

PORT (a, b, clk: IN BIT;

q: OUT BIT);

END example;

---------------------------------------

ARCHITECTURE example OF example IS

SIGNAL temp : BIT;

BEGIN

temp <= a NAND b;

PROCESS (clk)

BEGIN

IF (clk’EVENT AND clk=’1’) THEN q<=temp;

END IF;

END PROCESS;

END example;
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a
b

clk

DFF q

concurrent execution
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Exercise

Write the VHDL code of the following

circuit:

a
b

c

d

There are 3 inputs, and 1 output, and 2

internal signals (optionals).

You will only use BIT datatype. You will

need to use some of the logical operators:

AND, OR, NAND, NOR, XOR.

ENTITY example IS

PORT (a, b, c: IN BIT;

d: OUT BIT);

END example;

---------------------------------------

ARCHITECTURE my_example OF example IS

SIGNAL tmp1 : BIT;

SIGNAL tmp2 : BIT;

BEGIN

tmp1 <= a AND b;

tmp2 <= tmp1 NOR c;

d <= a NAND tmp2;

END my_example;

ENTITY example2 IS

PORT (a, b, c: IN BIT;

d: OUT BIT);

END example2;

---------------------------------------

ARCHITECTURE my_example2 OF example2 IS

BEGIN

d <= ((a AND b) NOR c ) NAND a;

END my_example2;
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Pre-defined Data Types

Pre-defined Data Types

• std.standard: Defines BIT, BOOLEAN, INTEGER, and REAL data types;

• ieee.std logic 1164: Defines STD LOGIC and STD ULOGIC data types;

• ieee.numeric std: Defines SIGNED and UNSIGNED data types, plus several data

conversion functions, like to integer(p), to unsigned(p,b), to signed(p,b);

• ieee.std logic signed and ieee.std logic unsigned: Contain functions that

allow operations with STD LOGIC VECTOR data to be performed as if the data were

of type SIGNED or UNSIGNED, respectively.
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BIT

Definition

BIT (and BIT VECTOR): 2-level logic (‘0’, ‘1’).

Example

SIGNAL x: BIT; -- x is declared as a one-digit signal of type BIT.

SIGNAL y: BIT_VECTOR (3 DOWNTO 0); -- y is a 4-bit vector, with the leftmost bit being the MSB.

SIGNAL w: BIT_VECTOR (0 TO 7); -- w is an 8-bit vector, with the rightmost bit being the MSB.

x <= ’1’;

-- x is a single-bit signal (as specified above), whose value is ’1’.

-- Notice that single quotes (’ ’) are used for a single bit.

y <= "0111";

-- y is a 4-bit signal (as specified above), whose value is "0111" (MSB=’0’).

-- Notice that double quotes (" ") are used for vectors.

w <= "01110001";

-- w is an 8-bit signal, whose value is "01110001" (MSB=’1’).
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STD LOGIC

Definition

STD LOGIC (and STD LOGIC VECTOR): 8-valued logic system introduced in the IEEE

1164 standard.

‘X’ Forcing Unknown (synthesizable unknown)

‘0’ Forcing Low (synthesizable logic ‘0’)

‘1’ Forcing High (synthesizable logic ‘1’)

‘Z’ High impedance (synthesizable tri-state buffer)

‘W’ Weak unknown (can’t tell if it should be 0 or 1)

‘L’ Weak low (that should probably go to 0)

‘H’ Weak high (that should probably go to 1)

‘-’ Don’t care

Example

SIGNAL x: STD_LOGIC;

-- x is declared as a one-digit (scalar) signal of type STD_LOGIC.

SIGNAL y: STD_LOGIC_VECTOR (3 DOWNTO 0) := "0001";

-- y is declared as a 4-bit vector, with the leftmost bit being the MSB.

-- The initial value (optional) of y is "0001".

-- Notice that the ":=" operator is used to establish the initial value.

31/69



STD LOGIC

Definition

STD LOGIC (and STD LOGIC VECTOR): 8-valued logic system introduced in the IEEE

1164 standard.

‘X’ Forcing Unknown (synthesizable unknown)

‘0’ Forcing Low (synthesizable logic ‘0’)

‘1’ Forcing High (synthesizable logic ‘1’)

‘Z’ High impedance (synthesizable tri-state buffer)

‘W’ Weak unknown (can’t tell if it should be 0 or 1)

‘L’ Weak low (that should probably go to 0)

‘H’ Weak high (that should probably go to 1)

‘-’ Don’t care

Example

SIGNAL x: STD_LOGIC;

-- x is declared as a one-digit (scalar) signal of type STD_LOGIC.

SIGNAL y: STD_LOGIC_VECTOR (3 DOWNTO 0) := "0001";

-- y is declared as a 4-bit vector, with the leftmost bit being the MSB.

-- The initial value (optional) of y is "0001".

-- Notice that the ":=" operator is used to establish the initial value.

31/69



STD ULOGIC

Definition

STD ULOGIC (and STD ULOGIC VECTOR): 9-level logic system introduced in the IEEE

1164 standard (‘U’, ‘X’, ‘0’, ‘1’, ‘Z’, ‘W’, ‘L’, ‘H’, ‘-’).

‘U’ stands for Unresolved =⇒ Driver conflicts

Resolved logic system
X 0 1 Z W L H -

X X X X X X X X X

0 X 0 X 0 0 0 0 X

1 X X 1 1 1 1 1 X

Z X 0 1 Z W L H X

W X 0 1 W W W W X

L X 0 1 L W L W X

H X 0 1 H W W H X

- X X X X X X X X
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High level Data Types

BOOLEAN
TRUE, FALSE.

INTEGER
32-bit integers (from -2,147,483,647 to +2,147,483,647).

NATURAL
Non-negative integers (from 0 to +2,147,483,647).

REAL
Real numbers ranging from -1.0E38 to +1.0E38. Not synthesizable.

Physical literals
Used to inform physical quantities, like time, voltage, etc. Useful in simulations. Not

synthesizable.

Character literals
Single ASCII character or a string of such characters. Not synthesizable.

SIGNED and UNSIGNED
Data types defined in the ieee.numeric std package. They have the appearance of

STD LOGIC VECTOR, but accept arithmetic operations, which are typical of INTEGER

data types.
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High level Data Types

Example

x0 <= ’0’; -- bit, std_logic , or std_ulogic value ’0’

x1 <= "00011111"; -- bit_vector , std_logic_vector , std_ulogic_vector , signed, or unsigned

x2 <= "0001_1111"; -- underscore allowed to ease visualization

x3 <= "101111"; -- binary representation of decimal 47

x4 <= B"101111"; -- binary representation of decimal 47

x5 <= O"57"; -- octal representation of decimal 47

x6 <= X"2F"; -- hexadecimal representation of decimal 47

n <= 1200; -- integer

m <= 1_200; -- integer, underscore allowed

IF ready THEN... -- Boolean, executed if ready=TRUE

y <= 1.2E-5; -- real, not synthesizable

q <= d AFTER 10 NS; -- physical, not synthesizable

Example
Operations between data of differents types:

SIGNAL a: BIT;

SIGNAL b: BIT_VECTOR(7 DOWNTO 0);

SIGNAL c: STD_LOGIC;

SIGNAL d: STD_LOGIC_VECTOR(7 DOWNTO 0);

SIGNAL e: INTEGER RANGE 0 TO 255;

---------------------------------------------------------------------

a <= b(5); -- legal (same scalar type: BIT)

b(0) <= a; -- legal (same scalar type: BIT)

c <= d(5); -- legal (same scalar type: STD_LOGIC)

d(0) <= c; -- legal (same scalar type: STD_LOGIC)

a <= c; -- illegal (type mismatch: BIT x STD_LOGIC)

b <= d; -- illegal (type mismatch: BIT_VECTOR x STD_LOGIC_VECTOR)

e <= b; -- illegal (type mismatch: INTEGER x BIT_VECTOR)

e <= d; -- illegal (type mismatch: INTEGER x STD_LOGIC_VECTOR)

34/69



High level Data Types

Example

x0 <= ’0’; -- bit, std_logic , or std_ulogic value ’0’

x1 <= "00011111"; -- bit_vector , std_logic_vector , std_ulogic_vector , signed, or unsigned

x2 <= "0001_1111"; -- underscore allowed to ease visualization

x3 <= "101111"; -- binary representation of decimal 47

x4 <= B"101111"; -- binary representation of decimal 47

x5 <= O"57"; -- octal representation of decimal 47

x6 <= X"2F"; -- hexadecimal representation of decimal 47

n <= 1200; -- integer

m <= 1_200; -- integer, underscore allowed

IF ready THEN... -- Boolean, executed if ready=TRUE

y <= 1.2E-5; -- real, not synthesizable

q <= d AFTER 10 NS; -- physical, not synthesizable

Example
Operations between data of differents types:

SIGNAL a: BIT;

SIGNAL b: BIT_VECTOR(7 DOWNTO 0);

SIGNAL c: STD_LOGIC;

SIGNAL d: STD_LOGIC_VECTOR(7 DOWNTO 0);

SIGNAL e: INTEGER RANGE 0 TO 255;

---------------------------------------------------------------------

a <= b(5); -- legal (same scalar type: BIT)

b(0) <= a; -- legal (same scalar type: BIT)

c <= d(5); -- legal (same scalar type: STD_LOGIC)

d(0) <= c; -- legal (same scalar type: STD_LOGIC)

a <= c; -- illegal (type mismatch: BIT x STD_LOGIC)

b <= d; -- illegal (type mismatch: BIT_VECTOR x STD_LOGIC_VECTOR)

e <= b; -- illegal (type mismatch: INTEGER x BIT_VECTOR)

e <= d; -- illegal (type mismatch: INTEGER x STD_LOGIC_VECTOR) 34/69



User-Defined Data Types

Integer

TYPE integer IS RANGE -2147483647 TO +2147483647; -- This is indeed the pre-defined type INTEGER.

TYPE natural IS RANGE 0 TO +2147483647; -- This is indeed the pre-defined type NATURAL.

TYPE my_integer IS RANGE -32 TO 32; -- A user-defined subset of integers.

TYPE student_grade IS RANGE 0 TO 100; -- A user-defined subset of integers or naturals.

Enumerated

TYPE bit IS (’0’, ’1’); -- This is indeed the pre-defined type BIT

TYPE my_logic IS (’0’, ’1’, ’Z’); -- A user-defined subset of std_logic.

TYPE bit_vector IS ARRAY (NATURAL RANGE <>) OF BIT;-- This is indeed the pre-defined type BIT_VECTOR.

-- RANGE <> is used to indicate that the range is

-- unconstrained.

-- NATURAL RANGE <>, on the other hand, indicates

-- that the only restriction is that the range must

-- fall within the NATURAL range.

TYPE state IS (idle, forward, backward, stop); -- An enumerated data type,

-- typical of finite state machines.

TYPE color IS (red, green, blue, white); -- Another enumerated data type.
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-- unconstrained.

-- NATURAL RANGE <>, on the other hand, indicates
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SIGNED and UNSIGNED

From the package ieee.numeric std

Example

SIGNAL x: SIGNED (7 DOWNTO 0);

SIGNAL y: UNSIGNED (0 TO 3);

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.numeric_std.all;

-- extra package necessary

...

SIGNAL a: SIGNED (7 DOWNTO 0);

SIGNAL b: SIGNED (7 DOWNTO 0);

SIGNAL v: SIGNED (7 DOWNTO 0);

SIGNAL w: SIGNED (7 DOWNTO 0);

...

v <= a + b; --legal (arithmetic operation OK)

w <= a AND b; --illegal (logical operation not OK)

LIBRARY ieee;

USE ieee.std_logic_1164.all;

-- no extra package required

...

SIGNAL a: STD_LOGIC_VECTOR (7 DOWNTO 0);

SIGNAL b: STD_LOGIC_VECTOR (7 DOWNTO 0);

SIGNAL v: STD_LOGIC_VECTOR (7 DOWNTO 0);

SIGNAL w: STD_LOGIC_VECTOR (7 DOWNTO 0);

...

v <= a + b; --illegal (arithmetic operation not OK)

w <= a AND b; --legal (logical operation OK)
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Data conversion

Several data conversion functions and type-casting in ieee.numeric std:

function type of p b

to integer(p) INTEGER, UNSIGNED, SIGNED

to unsigned(p,b) INTEGER size (bits)

to signed(p,b) INTEGER size (bits)

signed(p)(*) STD LOGIC VECTOR

unsigned(p)(*) STD LOGIC VECTOR

std logic vector(p)(*) SIGNED, UNSIGNED

Example

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.numeric_std.all;

...

SIGNAL a: UNSIGNED (7 DOWNTO 0);

SIGNAL b: UNSIGNED (7 DOWNTO 0);

SIGNAL y: STD_LOGIC_VECTOR (7 DOWNTO 0);

...

y <= STD_LOGIC_VECTOR ((a+b), 8);

-- Legal operation: a+b is converted from UNSIGNED to an 8-bit STD_LOGIC_VECTOR value,

-- then assigned to y.
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Type of Operators

• Assignment operators

• Logical operators

• Arithmetic operators

• Relational operators

• Shift operators

• Concatenation operators

38/69



Assignment operators

<= Used to assign a value to a SIGNAL.

:= Used to assign a value to a VARIABLE, CONSTANT, or GENERIC.

Used also for establishing initial values.

=> Used to assign values to individual vector elements or with OTHERS.

Example

SIGNAL x : STD_LOGIC;

VARIABLE y : STD_LOGIC_VECTOR(3 DOWNTO 0); -- Leftmost bit is MSB

SIGNAL w: STD_LOGIC_VECTOR(0 TO 7); -- Rightmost bit is

...

x <= ’1’; -- ’1’ is assigned to SIGNAL x using "<="

y := "0000"; -- "0000" is assigned to VARIABLE y using ":="

w <= "10000000"; -- LSB is ’1’, the others are ’0’

w <= (0 =>’1’, OTHERS =>’0’); -- LSB is ’1’, the others are ’0’
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Logical operators

NOT

AND

OR

NAND

NOR

XOR

XNOR

The data must be of type BIT, STD LOGIC, or STD ULOGIC (or, their respective

extensions, BIT VECTOR, STD LOGIC VECTOR, or STD ULOGIC VECTOR).

Example

y <= NOT a AND b;

y <= NOT (a AND b);

y <= a NAND b;
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Arithmetic operators

+ Addition

- Subtraction

* Multiplication

/ Division

** Exponentiation

MOD Modulus

REM Remainder

ABS Absolute value

The data can be of type INTEGER, SIGNED, UNSIGNED, or REAL.

Also, if the std logic signed or the std logic unsigned package of the ieee library

is used, then STD LOGIC VECTOR can also be employed directly in addition and

subtraction operations.

Warning
Must be carefull about the last five, the synthesis (if it is possible) may not be what

you expect !
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Comparison operators

= Equal to

/= Not equal to

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

The data can be of any type listed above.
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Shift operators

sll Shift left logic positions on the right are filled with ‘0’s

srl Shift right logic positions on the left are filled with ‘0’s

The left operand must be of type BIT VECTOR, while the right operand must be an

INTEGER.

Example

SIGNAL b : BIT_VECTOR (3 DOWNTO 0) := "1100";

SIGNAL x : BIT_VECTOR (3 DOWNTO 0);

SIGNAL y : BIT_VECTOR (3 DOWNTO 0);

...

x <= b sll 2; -- x <= "0000"

y <= b srl 1; -- y <= "0110"
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Concatenation operator

The concatenation operator is denoted &.

The data can be of type BIT, STD LOGIC, or STD ULOGIC (or, their respective

extensions, BIT VECTOR, STD LOGIC VECTOR, or STD ULOGIC VECTOR).

Example

SIGNAL a : BIT_VECTOR (3 DOWNTO 0) := "1001";

SIGNAL b : BIT_VECTOR (3 DOWNTO 0) := "1100";

SIGNAL x : BIT_VECTOR (7 DOWNTO 0);

...

x <= a & b; -- x <= "10011100"
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Signal Attributes

Their syntax is the following: signal name’attribute name

s’EVENT Returns true when an event occurs on s

s’STABLE Returns true if no event has occurred on s

s’ACTIVE Returns true if s=‘1’

s’LAST EVENT Returns the time elapsed since last event

s’LAST ACTIVE Returns the time elapsed since last s=‘1’

s’LAST VALUE Returns the value of s before the last event

Example

IF (clk’EVENT AND clk=’1’)... -- EVENT attribute used with IF

IF (NOT clk’STABLE AND clk=’1’)... -- STABLE attribute used with IF

WAIT UNTIL (clk’EVENT AND clk=’1’); -- EVENT attribute used with wait
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To go further

• There exists more operators (sla, sra, rol, . . . );

• There exists more attributes (LOW, HIGH, LEFT, . . . );

• You can define your own attribute;

• You can overload the existing operators.
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Exercise

Determine the values of the xi and d.

SIGNAL a : BIT := ’1’;

SIGNAL b : BIT_VECTOR (3 DOWNTO 0) := "1100";

SIGNAL c : BIT_VECTOR (3 DOWNTO 0) := "0010";

SIGNAL d : BIT_VECTOR (7 DOWNTO 0);

...

x1 <= a & c;

x2 <= c & b;

x3 <= b XOR c;

x4 <= a NOR b(3);

x5 <= b sll 2;

x6 <= b srl 1;

x7 <= a AND NOT b(0) AND NOT c(1);

d <= (5=>’0’, OTHERS=>’1’);

Solution

x1 <= "10010";

x2 <= "00101100";

x3 <= "1110";

x4 <= ’0’;

x5 <= "0000";

x6 <= "0110";

x7 <= ’0’;

d <= "11011111";
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Concurrent code



Concurrent code

VHDL code is inherently concurrent (parallel).

ENTITY example IS

PORT (...);

END example;

---------------------------------------

ARCHITECTURE example OF example IS

...

BEGIN

statement 1;

statement 2;

statement 3;

END example;

≡

ENTITY example IS

PORT (...);

END example;

---------------------------------------

ARCHITECTURE example OF example IS

...

BEGIN

statement 2;

statement 3;

statement 1;

END example;

Concurrents statements

• Operators;

• The WHEN statement (WHEN/ELSE or WITH/SELECT/WHEN);

• The GENERATE statement;

• The BLOCK statement.
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WHEN statement

It is the conditional concurrent statement.

WHEN/ELSE (simple WHEN)

assignment WHEN condition ELSE

assignment WHEN condition ELSE

...;

WITH/SELECT/WHEN

(selected WHEN)

WITH identifier SELECT

assignment WHEN value,

assignment WHEN value,

...;
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WHEN statement

Example
An example of Multiplexer

a

b

c

d

MUX y

sel(1 : 0)

sel y

00 a

01 b

10 c

11 d

----------- Solution 1: with WHEN/ELSE ------------

LIBRARY ieee;

USE ieee.std_logic_1164.all;

---------------------------------------------------

ENTITY mux IS

PORT ( a, b, c, d: IN STD_LOGIC;

sel: IN STD_LOGIC_VECTOR (1 DOWNTO 0);

y: OUT STD_LOGIC);

END mux;

---------------------------------------------------

ARCHITECTURE mux1 OF mux IS

BEGIN

y <= a WHEN sel="00" ELSE

b WHEN sel="01" ELSE

c WHEN sel="10" ELSE

d;

END mux1;

---------------------------------------------------

-------- Solution 2: with WITH/SELECT/WHEN --------

LIBRARY ieee;

USE ieee.std_logic_1164.all;

---------------------------------------------------

ENTITY mux IS

PORT ( a, b, c, d: IN STD_LOGIC;

sel: IN STD_LOGIC_VECTOR (1 DOWNTO 0);

y: OUT STD_LOGIC);

END mux;

---------------------------------------------------

ARCHITECTURE mux2 OF mux IS

BEGIN

WITH sel SELECT

y <= a WHEN "00",-- notice "," instead of ";"

b WHEN "01",

c WHEN "10",

d WHEN OTHERS;-- cannot be "d WHEN "11"

END mux2;

---------------------------------------------------
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GENERATE statement

It is the loop concurrent statement.

FOR/GENERATE

label: FOR identifier IN range GENERATE

(concurrent assignments)

END GENERATE;

Example

SIGNAL x: BIT_VECTOR (7 DOWNTO 0);

SIGNAL y: BIT_VECTOR (15 DOWNTO 0);

SIGNAL z: BIT_VECTOR (15 DOWNTO 0);

...

G1: FOR i IN x’RANGE GENERATE

z(i) <= x(i) AND y(i+8);

END GENERATE;

G2: FOR i IN 0 TO 7 GENERATE

z(i+8) <= x(i) OR y(i);

END GENERATE;

Warning

• Limits of the range must be static;

• No multiply-driven signals allowed.
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Exercise

Build an 8-bit Adder using only logical operations.

a (7:0)

b (7:0)

8-bit

Adder

s (7:0)

cout

a(0)

b(0)

Half

Adder

s(0)

c(0)

a(1)

b(1)

Full

Adder

s(1)

c(1)

. . .

a(7)

b(7)

Full

Adder

s(7)

c(7) = cout

ENTITY adder_8_bits IS

PORT (a, b: IN STD_LOGIC_VECTOR (7 DOWNTO 0);

s: OUT STD_LOGIC_VECTOR (7 DOWNTO 0);

cout: OUT STD_LOGIC);

END adder_8_bits;

------------------------------------

ARCHITECTURE my_adder OF adder_8_bits IS

SIGNAL c : STD_LOGIC_VECTOR (7 DOWNTO 0);

SIGNAL i : INTEGER RANGE 0 TO 7;

BEGIN

-- Half Adder on bit 0

s(0) <= a(0) XOR b(0);

c(0) <= a(0) AND b(0);

-- Generate all the Full Adders

G1: FOR i IN 1 TO 7 GENERATE

-- Full Adder on bit i

s(i) <= a(i) XOR b(i) XOR c(i-1);

c(i) <= (a(i) AND b(i)) OR (a(i) AND c(i-1))

OR (b(i) AND c(i-1));

END GENERATE;

-- Last carry is cout

cout <= c(7);

END my_adder;
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Sequential code

When the output depends on previous inputs.
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In sequential code, the statements are executed in order.

In VHDL, the only code executed sequentially is in the sections PROCESS, FUNCTION, or

PROCEDURE.
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PROCESS

The section PROCESS has the following syntax:

[label:] PROCESS (sensitivity list)

[VARIABLE name type [range] [:= initial_value;]]

BEGIN

(sequential code)

END PROCESS [label];

VARIABLE

VARIABLE are the equivalent of SIGNAL for a PROCESS. But there are some difference:

• They can only be used inside a PROCESS, FUNCTION, or PROCEDURE;

• They are defined locally;

• The assignement operator is := .

Sequential statements

• The IF statement;

• The WAIT statement;

• The CASE statement;

• The LOOP statement.
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IF statement

It is a conditional sequential statement.

IF conditions THEN assignments;

ELSIF conditions THEN assignments;

...

ELSE assignments;

END IF;

Example

IF (x<y) THEN temp:="11111111";

ELSIF (x=y AND w=’0’) THEN temp:="11110000";

ELSE temp:=(OTHERS =>’0’);
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IF statement

Example
A 1-digit counter (from 0 to 9)

clk Counter digit(3:0)

---------------------------------------------

LIBRARY ieee;

USE ieee.std_logic_1164.all;

---------------------------------------------

ENTITY counter IS

PORT (clk : IN STD_LOGIC;

digit : OUT INTEGER RANGE 0 TO 9);

END counter;

---------------------------------------------

ARCHITECTURE counter OF counter IS

BEGIN

count: PROCESS(clk)

VARIABLE temp : INTEGER RANGE 0 TO 10;

BEGIN

IF (clk’EVENT AND clk=’1’) THEN

temp := temp + 1;

IF (temp=10) THEN temp := 0;

END IF;

END IF;

digit <= temp;

END PROCESS count;

END counter;

---------------------------------------------

Result
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CASE statement

It is a conditional sequential statement, very similar to the WHEN statement (concurrent

equivalent).

CASE identifier IS

WHEN value => assignments;

WHEN value => assignments;

...

END CASE;

Example

CASE control IS

WHEN "00" => x<=a; y<=b;

WHEN "01" => x<=b; y<=c;

WHEN OTHERS => x<="0000"; y<="ZZZZ";

END CASE;

• Another important keyword is NULL: used when no action is to take place;

• CASE allows multiple assignments for each test condition, while WHEN allows only

one.
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CASE statement

Example
A 1-digit counter (from 0 to 9)

with a reset

clk Counter digit(3:0)

rst

---------------------------------------------

LIBRARY ieee;

USE ieee.std_logic_1164.all;

---------------------------------------------

ENTITY counter IS

PORT (clk, rst : IN STD_LOGIC;

digit : OUT INTEGER RANGE 0 TO 9);

END counter;

---------------------------------------------

ARCHITECTURE counter OF counter IS

BEGIN

count: PROCESS(clk, rst)

VARIABLE temp : INTEGER RANGE 0 TO 10;

BEGIN

CASE rst IS

WHEN ’1’ => temp :=0;

WHEN ’0’ =>

IF (clk’EVENT AND clk=’1’) THEN

temp := temp + 1;

IF (temp=10) THEN temp := 0;

END IF;

END IF;

WHEN OTHERS => NULL;

digit <= temp;

END PROCESS count;

END counter;

---------------------------------------------

58/69



CASE statement

Example
A 1-digit counter (from 0 to 9)

with a reset

clk Counter digit(3:0)

rst

---------------------------------------------

LIBRARY ieee;

USE ieee.std_logic_1164.all;

---------------------------------------------

ENTITY counter IS

PORT (clk, rst : IN STD_LOGIC;

digit : OUT INTEGER RANGE 0 TO 9);

END counter;

---------------------------------------------

ARCHITECTURE counter OF counter IS

BEGIN

count: PROCESS(clk, rst)

VARIABLE temp : INTEGER RANGE 0 TO 10;

BEGIN

CASE rst IS

WHEN ’1’ => temp :=0;

WHEN ’0’ =>

IF (clk’EVENT AND clk=’1’) THEN

temp := temp + 1;

IF (temp=10) THEN temp := 0;

END IF;

END IF;

WHEN OTHERS => NULL;

digit <= temp;

END PROCESS count;

END counter;

---------------------------------------------

58/69



WAIT statement

It is a sequential statement to elapse time.

It appears in three forms:

WAIT UNTIL signal_condition;

WAIT ON signal1 [, signal2, ... ];

WAIT FOR time;

Example

PROCESS -- no sensitivity list

BEGIN

WAIT UNTIL (clk’EVENT AND clk=’1’);

IF (rst=’1’) THEN

x <= "00000000";

ELSIF (clk’EVENT AND clk=’1’) THEN

x <= a;

END IF;

END PROCESS;

PROCESS -- no sensitivity list

BEGIN

WAIT ON clk, rst;

IF (rst=’1’) THEN

output <= "00000000";

ELSIF (clk’EVENT AND clk=’1’) THEN

output <= input;

END IF;

END PROCESS;

For simulation

only:

WAIT FOR 5NS;
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LOOP statement

It is the loop sequential statement.

It appears in two forms:

[label:] FOR identifier IN range LOOP

(sequential statements)

END LOOP [label];

[label:] WHILE condition LOOP

(sequential statements)

END LOOP [label];

Example

FOR/LOOP

FOR i IN 0 TO 5 LOOP

x(i) <= enable AND w(i+2);

y(0, i) <= w(i);

END LOOP;

WHILE/LOOP

WHILE (i < 10) LOOP

WAIT UNTIL clk’EVENT AND clk=’1’;

i:=i+1;

(other statements)

END LOOP;

• Limits of the range of FOR/LOOP must be static;

• There exists a statement to exit the loop (EXIT), and a statement to skip loop

steps (NEXT).
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VHDL

Composition



Composition

Idea
Compose basic “brick” of code in order to build bigger system.

Benefits

• Reusability of code;

• More understandable code;

• Modularity;

How to do it in VHDL

• COMPONENT;

• FUNCTION;

• PROCEDURE.
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COMPONENT

Definition

COMPONENT = conventional code (LIBRARY declarations + ENTITY + ARCHITECTURE).

Declare a COMPONENT make it usable within another circuit, thus allowing the

construction of hierarchical designs.

Declaration

COMPONENT component_name IS

PORT (

port_name : signal_mode signal_type;

port_name : signal_mode signal_type;

...);

END COMPONENT;

Instantiation

label: component_name PORT MAP (port_list);
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COMPONENT

Example

a

b

Add

&

MUX s

sel

---------- File adder.vhd: -------------------

LIBRARY ieee;

USE ieee.std_logic_1164.all;

----------------------------------------------

ENTITY adder IS

PORT (a, b: IN STD_LOGIC_VECTOR (7 DOWNTO 0);

s: OUT STD_LOGIC_VECTOR (7 DOWNTO 0));

END adder

----------------------------------------------

ARCHITECTURE my_adder OF adder IS

BEGIN

...

END my_adder

----------------------------------------------

---------- File and_gate.vhd: --------------

LIBRARY ieee;

USE ieee.std_logic_1164.all;

----------------------------------------------

ENTITY and_gate IS

PORT (a, b: IN STD_LOGIC_VECTOR (7 DOWNTO 0);

s: OUT STD_LOGIC_VECTOR (7 DOWNTO 0));

END and_gate

----------------------------------------------

ARCHITECTURE my_and_gate OF and_gate IS

BEGIN

...

END my_and_gate

----------------------------------------------
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COMPONENT

Example

a

b

Add

&

MUX s

sel

------------- File alu.vhd: ------------------

LIBRARY ieee;

USE ieee.std_logic_1164.all;

----------------------------------------------

ENTITY alu IS

PORT (a, b: IN STD_LOGIC_VECTOR (7 DOWNTO 0);

sel: IN STD_LOGIC;

s: OUT STD_LOGIC_VECTOR (7 DOWNTO 0));

END alu;

----------------------------------------------

ARCHITECTURE my_alu OF alu IS

COMPONENT adder IS

PORT (a,b: IN STD_LOGIC_VECTOR (7 DOWNTO 0);

s: OUT STD_LOGIC_VECTOR (7 DOWNTO 0));

END COMPONENT;

COMPONENT and_gate IS

PORT (a,b: IN STD_LOGIC_VECTOR (7 DOWNTO 0);

s: OUT STD_LOGIC_VECTOR (7 DOWNTO 0));

END COMPONENT;

SIGNAL tmp1, tmp2 : STD_LOGIC_VECTOR (7 DOWNTO 0);

BEGIN

U1: adder PORT MAP (a, b, tmp1);

U2: and_gate PORT MAP (a, b, tmp2);

s <= tmp1 WHEN sel=’0’ ELSE

tmp2;

END my_alu;

----------------------------------------------
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Mealy and Moore Machines



State Machines

Definition
A state machine is a mathematical model

used for designing sequential logic circuits.
s0

s1

s2

s3

a

b

c

d

ef

Implementation

• combinational:

• next state = f(input, previous state)

• output = g(input, previous state)

• a sequential part to synchronize the

state changing.

input Combinational

Logic

output

Sequential

Logic clock
reset

previous

state

next

state
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Mealy and Moore Machines

Moore Machine

• combinational:

• next state = f(input, previous state)

• output = g(previous state)

• sequential: D flip-flop.

input
f D g output

clock

next

state

previous state

Mealy Machine

• combinational:

• next state = f(input, previous state)

• output = g(input, previous state)

• sequential: D flip-flop.

input
f D

g output

clock

next

state

previous state
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Mealy and Moore Machines

Moore Machine

...

ENTITY moore_machine IS

PORT (input: IN <data_type_in >;

clk: IN STD_LOGIC;

output: OUT <data_type_out >);

END moore_machine;

----------------------------------------------

ARCHITECTURE my_moore OF moore_machine IS

COMPONENT f IS

PORT (input: IN <data_type_in >;

previous_state: IN <data_type_state >;

next_state: OUT <data_type_state >);

END COMPONENT;

COMPONENT g IS

PORT (current_state: IN <data_type_state >;

output: OUT <data_type_out >);

END COMPONENT;

SIGNAL p_state, n_state: <data_type_state >;

BEGIN

PROCESS (clk)

BEGIN

IF (clk’EVENT AND clk=’1’)

p_state <= n_state;

END IF;

END PROCESS;

U1: f PORT MAP (input, p_state, n_state);

U2: g PORT MAP (n_state, output);

END my_moore;

Mealy Machine

...

ENTITY mealy_machine IS

PORT (input: IN <data_type_in >;

clk: IN STD_LOGIC;

output: OUT <data_type_out >);

END mealy_machine;

----------------------------------------------

ARCHITECTURE my_mealy OF mealy_machine IS

COMPONENT f IS

PORT (input: IN <data_type_in >;

previous_state: IN <data_type_state >;

next_state: OUT <data_type_state >);

END COMPONENT;

COMPONENT g IS

PORT (input: IN <data_type_in >;

current_state: IN <data_type_state >;

output: OUT <data_type_out >);

END COMPONENT;

SIGNAL p_state, n_state: <data_type_state >;

BEGIN

PROCESS (clk)

BEGIN

IF (clk’EVENT AND clk=’1’)

p_state <= n_state;

END IF;

END PROCESS;

U1: f PORT MAP (input, p_state, n_state);

U2: g PORT MAP (input, n_state, output);

END my_mealy;
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Conclusion - Recap

Boolean Algebra

• Classical logic gates, and their truth tables;

• Simplify boolean expression using properties of the algebra, and Morgan’s Laws;

• Design simple logical circuit given a specification.

VHDL

• Structure of a VHDL file;

• Representation of data, and Data Types in VHDL;

• Basic operators;

• Concurrent code: the WHEN and GENERATE statements;

• Sequential code: write a PROCESS using VARIABLE and the IF, WAIT, CASE and

LOOP statements;

• Composition: use COMPONENT;

• Simulation: write a Simulation File in VHDL.
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Conclusion - Recap

State machine

• Definition of State machine;

• Mealy and Moore machine;

• Implementation of Mealy and Moore machine in VHDL;

Examples

• Half Adder and Full Adder;

• n bits Adder;

• SR flip-flop;

• D flip-flop;

• Multiplexer;

• Barrel shifter;

• Counter;

• Simple ALU;

• Chaser;

• Traffic light;

• PWM;
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